

		 digital preservation - file formats

 What do we mean by "embedded" files in PDF?

 09 January 2013

 The most important new feature of the recently released PDF/A-3 standard is that, unlike PDF/A-2 and PDF/A-1, it allows you to embed any file you like. Whether this is a good thing or not is the subject of some heated on-line discussions. But what do we actually mean by embedded files? As it turns out, the answer to this question isn’t as straightforward as you might think. One of the reasons for this is that in colloquial use we often talk about “embedded files” to describe the inclusion of any “non-text” element in a PDF (e.g. an image, a video or a file attachment). On the other hand, the word “embedded files” in the PDF standards (including PDF/A) refers to something much more specific, which is closely tied to PDF’s internal structure.

Embedded files and embedded file streams

When the PDF standard mentions “embedded files”, what it really refers to is a specific data structure. PDF has a File Specification Dictionary object, which in its simplest form is a table that contains a reference to some external file. PDF 1.3 extended this, making it possible to embed the contents of referenced files directly within the body of the PDF using Embedded File Streams. They are described in detail in Section 7.11.4 of the PDF Specification (ISO 32000). A File Specification Dictionary that refers to an embedded file can be identified by the presence of an EF entry.

Here’s an example (source: ISO 32000). First, here’s a file specification dictionary:

31 0 obj
<</Type /Filespec /F (mysvg.svg) /EF <</F 32 0 R>> >>
endobj

Note the EF entry, which references another PDF object. This is the actual embedded file stream. Here it is:

32 0 obj
<</Type /EmbeddedFile /Subtype /image#2Fsvg+xml /Length 72>>
stream
…SVG Data…
endstream
endobj

Note that the part between the stream and endstream keywords holds the actual file data, here an SVG image, but this could really be anything!

So, in short, when the PDF standard mentions “embedded files”, this really means Embedded File Streams.

So what about “embedded” images?

Here’s the first source of confusion: if a PDF contains images, we often colloquially call these “embedded”. However, internally they are not represented as Embedded File Streams, but as so-called Image XObjects. (In fact the PDF standard also includes yet another structure called inline images, but let’s forget about those just to avoid making things even more complicated.)

Here’s an example of an Image XObject (again taken from ISO 32000):

10 0 obj % Image XObject
<<
 /Type /XObject
 /Subtype /Image
 /Width 100
 /Height 200
 /ColorSpace /DeviceGray
 /BitsPerComponent 8
 /Length 2167
 /Filter /DCTDecode
>>
stream
…Image data…
endstream
endobj

Similar to embedded filestreams, the part between the stream and endstream keywords holds the actual image data. The difference is that only a limited set of pre-defined formats are allowed. These are defined by the Filter entry (see Section 7.4 in ISO 32000). In the example above, the value of Filter is DCTDecode, which means we are dealing with JPEG encoded image data.

Embedded file streams and file attachments

Going back to embedded file streams, you may now start wondering what they are used for. According to Section 7.11.4.1 of ISO 32000, they are primarily intended as a mechanism to ensure that external references in a PDF (i.e. references to other files) remain valid. It also states:

 The embedded files are included purely for convenience and need not be directly processed by any conforming reader.

This suggests that the usage of embedded file streams is simply restricted to file attachments (through a File Attachment Annotation or an EmbeddedFiles entry in the document’s name dictionary).

Here’s a sample file (created in Adobe Acrobat 9) that illustrates this:

http://www.opf-labs.org/format-corpus/pdfCabinetOfHorrors/fileAttachment.pdf

Looking at the underlying code we can see the File Specification Dictionary:

37 0 obj
<<
 /Desc()
 /EF<</F 38 0 R>>
 /F(KSBASE.WQ2)
 /Type/Filespec/UF(KSBASE.WQ2)>>
endobj

Note the /EF entry, which means the referenced file is embedded (the actual file data are in a separate stream object).

Further digging also reveals an EmbeddedFiles entry:

33 0 obj
<<
 /EmbeddedFiles 34 0 R
 /JavaScript 35 0 R
>>
endobj

However, careful inspection of ISO 32000 reveals that embedded file streams can also be used for multimedia! We’ll have a look at that in the next section…

Embedded file streams and multimedia

Section 13.2.1 (Multimedia) of the
PDF Specification (ISO 32000) describes how multimedia content is represented in PDF (emphases added by me):

 	
 Rendition actions (…) shall be used to begin the playing of multimedia content.

	A rendition action associates a screen annotation (…) with a rendition (…)
	Renditions are of two varieties: media renditions (…) that define the characteristics of the media to be played, and selector renditions (…) that enables choosing which of a set of media renditions should be played.
	Media renditions contain entries that specify what should be played (…), how it should be played (…), and where it should be played (…)

The actual data for a media object are defined by Media Clip Objects, and more specifically by the media clip data dictionary. Its description (Section 13.2.4.2) contains a note, saying that this dictionary “may reference a URL to a streaming video presentation or a movie embedded in the PDF file”. The description of the media clip data dictionary (Table 274) also states that the actual media data are “either a full file specification or a form XObject”.

In plain English, this means that multimedia content in PDF (e.g. movies that are meant to be rendered by the viewer) may be represented internally as an embedded file stream.

The following sample file illustrates this:

http://www.opf-labs.org/format-corpus/pdfCabinetOfHorrors/embedded_video_quicktime.pdf

This PDF 1.7 file was created in Acrobat 9, and if you open it you will see a short Quicktime movie that plays upon clicking on it.

Digging through the underlying PDF code reveals a Screen Annotation, a Rendition Action and a Media clip data dictionary. The latter looks like this:

41 0 obj
<<
 /CT(video/quicktime)
 /D 42 0 R
 /N(Media clip from animation.mov)
 /P<</TF(TEMPACCESS)>>
 /S/MCD
>>
endobj

It contains a reference to another object (42 0), which turns out to be a File Specification Dictionary:

42 0 obj
<<
 /EF<</F 43 0 R>>
 /F(<embedded file>)
 /Type/Filespec
 /UF(<embedded file>)
>>
endobj

What’s particularly interesting here is the /EF entry, which means we’re dealing with an embedded file stream here. (The actual movie data are in a stream object (43 0) that is referenced by the file specification dictionary.)

So, the analysis of this sample file confirms that embedded filestreams are actually used by Adobe Acrobat for multimedia content.

What does PDF/A say on embedded file streams?

In PDF/A-1, embedded file streams are not allowed at all:

 A file specification dictionary (…) shall not contain the EF key. A file’s name dictionary shall not contain the EmbeddedFiles key

In PDF/A-2, embedded file streams are allowed, but only if the embedded file itself is PDF/A (1 or 2) as well:

 A file specification dictionary, as defined in ISO 32000-1:2008, 7.11.3, may contain the EF key, provided that the embedded file is compliant with either ISO 19005-1 or this part of ISO 19005.

Finally, in PDF/A-3 this last limitation was dropped, which means that any file may be embedded1.

Does this mean PDF/A-3 supports multimedia?

No, not at all! Even though nothing stops you from embedding multimedia content (e.g. a Quicktime movie), you wouldn’t be able to use it as a renderable object inside a PDF/A-3 document. The reason is that the annotations and actions that are needed for this (e.g. Screen annotations and Rendition actions, to name but a few) are not allowed in PDF/A-3. So effectively you are only able to use embedded file streams as attachments.

Adobe adding to the confusion

A few weeks ago the embedding issue came up again in a blog post by Gary McGath. One of the comments there is from Adobe’s Leonord Rosenthol (who is also the Project Leader for PDF/A). After correctly pointing out some mistakes in both the original blog post and in an earlier a comment by me, he nevertheless added to the confusion by stating that objects that are are rendered by the viewer (movies, etc.) all use Annotations, and that embedded files (which he apparently uses a a synonym to attachments) are handled in a completely different manner. This doesn’t appear to be completely accurate: at least one class of renderable objects (screen annotations/rendition actions) may be using embedded filestreams. Also, embedded files that are used as attachments may be associated with a File Attachment Annotation, which means that “under the hood” both cases are actually more similar than first meets the eye (which is confirmed by the analysis of the 2 sample files in the preceding sections). Contributing to this confusion is also the fact that Section 7.11.4 of ISO 32000 erroneously states that embedded file streams are only used for non-renderable objects like file attachments, which is contradicted by their allowed use for multimedia content.

Does any of this matter, really?

Some might argue that the above discussion is nothing but semantic nitpicking. However, details like these do matter if we want to do a proper assessment of preservation risks in PDF documents. As an example, in this previous blog post I demonstrated how a PDF/A validator tool can be used to profile PDFs for “risky” features. Such tools typically give you a list of features. It is then largely up to the user to further interpret this information.

Now suppose we have a pre-ingest workflow that is meant to accept PDFs with multimedia content, while at the same time rejecting file attachments. By only using the presence of an embedded file stream (reported by both Apache’s and Acrobat’s Preflight tools) as a rejection criterion, we could end up unjustly rejecting files with multimedia content as well. To avoid this, we also need to take into account what the embedded file stream is used for, and for this we need to look at what annotation types are used, and the presence of any EmbeddedFiles entry in the document’s name dictionary. However, if we don’t know precisely which features we are looking for, we may well arrive at the wrong conclusions!

This is made all the worse by the fact that preservation issues are often formulated in vague and non-specific ways. An example is this issue on the OPF Wiki on the detection of “embedded objects”. The issue’s description suggests that images and tables are the main concern (both of which aren’t strictly speaking embedded objects). The corresponding solution page subsequently complicates things further by also throwing file attachments in the mix. In order to solve issues like these, it is helpful to know that images are (mostly) represented as Image XObjects in PDF. The solution should then be a method for detecting Image XObjects. However, without some background knowledge of PDF’s internal data structure, solving issues like these becomes a daunting, if not impossible task.

Final note

In this blog post I have tried to shed some light on a number of common misconceptions about embedded content in PDF. I might have inadvertently created some new ones in the process, so feel free to contribute any corrections or additions using the comment fields below.

The PDF specification is vast and complex, and I have only addressed a limited number of its features here. For instance, one might argue that a discussion of embedding-related features should also include fonts, metadata, ICC profiles, and so on. The coverage of multimedia features here is also incomplete, as I didn’t include Movie Annotations or Sound Annotations (which preceded the Screen Annotations, which are now more commonly used). These things were all left out here because of time and space constraints. This also means that further surprises may well be lurking ahead!

Originally published at the Open Preservation Foundation blog

 	
 Source: this unofficial newsletter item, as at this moment I don’t have access to the full specification of PDF/A-3. ↩

 	

 PDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	PDF/A as a preferred, sustainable format for spreadsheets?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	When (not) to migrate a PDF to PDF/A
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	What do we mean by "embedded" files in PDF?
	Identification of PDF preservation risks with Apache Preflight: a first impression
	PDF – Inventory of long-term preservation risks

 	← Previous
	Next →

 Comments

	
	 Post comment (Github)
	

 About

 Search

	
	
 Tags

 	

 Android
 	Towards a preservation workflow for mobile apps
	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 Apache-Preflight
 	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	Identification of PDF preservation risks with Apache Preflight: a first impression

	

 Apache-Tika
 	Extracting text from EPUB files in Python
	PDF processing and analysis with open-source tools
	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot

	

 APK
 	Towards a preservation workflow for mobile apps

	

 Debian
 	Adventures in Debian packaging
	Update on jpylyzer

	

 digital-dark-age
 	How to preserve your personal Twitter archive
	Wheel Out the Digital Dark Age Klaxon!

	

 digital-preservation-day
 	Wheel Out the Digital Dark Age Klaxon!

	

 disk-imaging
 	Writing yet another workflow tool for imaging portable media
	Identification of physical storage media and devices with Python and the Windows API
	A simple disk imaging workflow tool

	

 diskimgr
 	A simple disk imaging workflow tool

	

 DNS
 	Moving my Internet domains

	

 DROID
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 e-depot
 	Top 50 file formats in the KB e-Depot

	

 emulation
 	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 EPUB
 	Extracting text from EPUB files in Python
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Valid, but not accessible: crazy fixed EPUB layouts
	The future of EPUB? A first look at the EPUB 3.1 Editor’s draft
	Policy-based assessment of EPUB with Epubcheck
	EPUB for archival preservation: an update
	EPUB for archival preservation

	

 EPUBCheck
 	Policy-based assessment of EPUB with Epubcheck
	EPUB for archival preservation: an update

	

 Fido
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 FITS
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE

	

 FLAC
 	Breaking WAVEs (and some FLACs too)

	

 floppy-disks
 	Writing yet another workflow tool for imaging portable media
	Identification of physical storage media and devices with Python and the Windows API
	Offline digital data carriers in the KB deposit collection
	A simple disk imaging workflow tool

	

 format-identification
 	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot
	Magic editing and creation: a primer
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 format-validation
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset

	

 geodata
 	Mapping the Dutch web domain
	Web domain geolocation and spatial analysis with QGIS

	

 GitHub-Pages
 	Moving my Internet domains

	

 GW-BASIC
 	A prototype JP2 validator and properties extractor

	

 HFS
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs

	

 High-Sierra
 	Introducing Isolyzer 1.4

	

 internet
 	Moving my Internet domains

	

 iOS
 	Towards a preservation workflow for mobile apps

	

 IPA
 	Towards a preservation workflow for mobile apps

	

 iromlab
 	Image and Rip Optical Media Like A Boss!

	

 ISO-9660
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer
	Preserving optical media from the command-line

	

 isolyzer
 	Introducing Isolyzer 1.4
	A simple workflow tool for imaging optical media using readom and ddrescue
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer

	

 JHOVE
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Breaking WAVEs (and some FLACs too)
	Why can't we have digital preservation tools that just work?
	A simple JP2 file structure checker

	

 JHOVE2
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE

	

 JP2
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Response to report on JPEG 2000 expert round table
	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Optimising archival JP2s for the derivation of access copies
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker
	Paper on JPEG 2000 for preservation
	Ensuring the suitability of JPEG 2000 for preservation

	

 jpeg-2000
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Response to report on JPEG 2000 expert round table
	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Optimising archival JP2s for the derivation of access copies
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker
	Paper on JPEG 2000 for preservation
	Ensuring the suitability of JPEG 2000 for preservation

	

 jpylyzer
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Adventures in Debian packaging
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker

	

 magic
 	Magic editing and creation: a primer

	

 Microsoft
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

	

 omimgr
 	A simple workflow tool for imaging optical media using readom and ddrescue

	

 OneDrive
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

	

 optical-media
 	Identification of physical storage media and devices with Python and the Windows API
	Introducing Isolyzer 1.4
	Offline digital data carriers in the KB deposit collection
	A simple workflow tool for imaging optical media using readom and ddrescue
	Resurrecting the first Dutch web index: NL-menu revisited
	Update on Isolyzer: UDF, HFS+ and more!
	Image and Rip Optical Media Like A Boss!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer
	Breaking WAVEs (and some FLACs too)
	Preserving optical media from the command-line

	

 packaging
 	Adventures in Debian packaging
	Update on jpylyzer

	

 PDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	PDF/A as a preferred, sustainable format for spreadsheets?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	When (not) to migrate a PDF to PDF/A
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	What do we mean by "embedded" files in PDF?
	Identification of PDF preservation risks with Apache Preflight: a first impression
	PDF – Inventory of long-term preservation risks

	

 preservation-risks
 	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Does Microsoft OneDrive export large ZIP files that are corrupt?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	Measuring Bigfoot
	Assessing file format risks: searching for Bigfoot?
	PDF – Inventory of long-term preservation risks
	EPUB for archival preservation

	

 python
 	Extracting text from EPUB files in Python
	Identification of physical storage media and devices with Python and the Windows API

	

 Quattro-Pro
 	Quattro Pro for DOS: an obsolete format at last?

	

 rant
 	Why can't we have digital preservation tools that just work?

	

 schematron
 	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Policy-based assessment of EPUB with Epubcheck
	Automated assessment of JP2 against a technical profile

	

 Siegfried
 	Towards a preservation workflow for mobile apps

	

 significant-properties
 	On The Significant Properties of Spreadsheets

	

 spreadsheets
 	On The Significant Properties of Spreadsheets
	PDF/A as a preferred, sustainable format for spreadsheets?
	Quattro Pro for DOS: an obsolete format at last?

	

 tapeimgr
 	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	Roll the tape - recovering '90s data tapes in BitCurator

	

 tapes
 	Identification of physical storage media and devices with Python and the Windows API
	Offline digital data carriers in the KB deposit collection
	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	Roll the tape - recovering '90s data tapes in BitCurator

	

 TIFF
 	On The Significant Properties of Spreadsheets

	

 Twitter
 	How to preserve your personal Twitter archive

	

 UDF
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs

	

 unix-file
 	Towards a preservation workflow for mobile apps
	Magic editing and creation: a primer
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 VeraPDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

	

 virtualization
 	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 WAVE
 	Breaking WAVEs (and some FLACs too)

	

 web-archaeology
 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web
	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	A simple disk imaging workflow tool
	Roll the tape - recovering '90s data tapes in BitCurator
	Crawling offline web content: the NL-menu case
	Resurrecting the first Dutch web index: NL-menu revisited

	

 web-archiving
 	How to preserve your personal Twitter archive
	Mapping the Dutch web domain
	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web
	Web domain geolocation and spatial analysis with QGIS
	Crawling offline web content: the NL-menu case
	Resurrecting the first Dutch web index: NL-menu revisited
	Dutch newspaper wipes out articles citing fabricated sources - Internet Archive to the rescue!
	Perdiep Ramesar in het Internet Archive
	Demise of the Dutch Blogosphere
	How to save a web page to the Internet Archive

	

 XS4ALL
 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web

	

 ZIP
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

 Archive

 2023
 June

 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset

 May

 	Identification of PDF preservation risks with VeraPDF and JHOVE

 March

 	Extracting text from EPUB files in Python

 February

 	Moving my Internet domains

 January

 	Writing yet another workflow tool for imaging portable media

 2022
 November

 	How to preserve your personal Twitter archive
	Wheel Out the Digital Dark Age Klaxon!

 June

 	Identification of physical storage media and devices with Python and the Windows API

 April

 	Introducing Isolyzer 1.4

 March

 	Generating lossy access JP2s from lossless preservation masters

 2021
 September

 	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools

 February

 	Towards a preservation workflow for mobile apps
	Four Android emulators, two apps

 2020
 September

 	Mapping the Dutch web domain

 June

 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web

 April

 	ISO/IEC TS 22424 standard on EPUB3 preservation

 March

 	Does Microsoft OneDrive export large ZIP files that are corrupt?

 February

 	Offline digital data carriers in the KB deposit collection
	Web domain geolocation and spatial analysis with QGIS

 2019
 September

 	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)

 April

 	A simple disk imaging workflow tool

 March

 	A simple workflow tool for imaging optical media using readom and ddrescue

 January

 	Roll the tape - recovering '90s data tapes in BitCurator

 2018
 July

 	Crawling offline web content: the NL-menu case

 April

 	Resurrecting the first Dutch web index: NL-menu revisited

 2017
 July

 	Update on Isolyzer: UDF, HFS+ and more!

 June

 	Image and Rip Optical Media Like A Boss!
	Policy-based assessment with VeraPDF - a first impression

 April

 	Imaging CD-Extra / Blue Book discs

 January

 	Detecting broken ISO images: introducing Isolyzer
	Breaking WAVEs (and some FLACs too)

 2016
 December

 	PDF/A as a preferred, sustainable format for spreadsheets?

 April

 	Valid, but not accessible: crazy fixed EPUB layouts

 March

 	The future of EPUB? A first look at the EPUB 3.1 Editor’s draft

 2015
 December

 	Jpylyzer 2015 round-up

 November

 	Preserving optical media from the command-line

 October

 	Response to report on JPEG 2000 expert round table

 July

 	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

 April

 	Top 50 file formats in the KB e-Depot

 March

 	Policy-based assessment of EPUB with Epubcheck

 January

 	Dutch newspaper wipes out articles citing fabricated sources - Internet Archive to the rescue!

 2014
 December

 	Perdiep Ramesar in het Internet Archive

 November

 	Demise of the Dutch Blogosphere

 October

 	Quattro Pro for DOS: an obsolete format at last?
	Running archived Android apps on a PC: first impressions

 September

 	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs

 August

 	When (not) to migrate a PDF to PDF/A
	How to save a web page to the Internet Archive

 January

 	Why can't we have digital preservation tools that just work?
	Identification of PDF preservation risks: analysis of Govdocs selected corpus

 2013
 October

 	Measuring Bigfoot

 September

 	Assessing file format risks: searching for Bigfoot?

 August

 	Optimising archival JP2s for the derivation of access copies

 July

 	Identification of PDF preservation risks with Apache Preflight: the sequel
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper

 May

 	EPUB for archival preservation: an update

 April

 	Adventures in Debian packaging

 January

 	What do we mean by "embedded" files in PDF?

 2012
 December

 	Identification of PDF preservation risks with Apache Preflight: a first impression

 September

 	Automated assessment of JP2 against a technical profile

 August

 	Magic editing and creation: a primer

 July

 	PDF – Inventory of long-term preservation risks

 June

 	EPUB for archival preservation

 April

 	Update on jpylyzer

 January

 	Jpylyzer documentation

 2011
 December

 	A prototype JP2 validator and properties extractor

 September

 	Evaluation of identification tools: first results from SCAPE
	A simple JP2 file structure checker

 July

 	Improved identification of XML: a Python experiment

 June

 	Paper on JPEG 2000 for preservation

 2010
 December

 	Ensuring the suitability of JPEG 2000 for preservation

 Issues

 Report a problem with this site

 Hackers Hall of Fame

 Social

 Mastodon (digipres.club)

 Feeds

 RSS

 ATOM

 © 2024 Johan van der Knijff. All content on this blog is licensed under a Creative Commons Attribution 4.0 International License, unless indicated otherwise. Created using Jekyll Bootstrap
 and Twitter Bootstrap.

	

