

		 digital preservation - file formats

 PDF processing and analysis with open-source tools

 06 September 2021

 Plumbers Tool Box by pszz on Flickr. Used under CC BY-NC-SA 2.0.

Over the years, I’ve been using a variety of open-source software tools for solving all sorts of issues with PDF documents. This post is an attempt to (finally) bring together my go-to PDF analysis and processing tools and commands for a variety of common tasks in one single place. It is largely based on a multitude of scattered lists, cheat-sheets and working notes that I made earlier. Starting with a brief overview of some general-purpose PDF toolkits, I then move on to a discussion of the following specific tasks:

	Validation and integrity testing
	PDF/A and PDF/UA compliance testing
	Document information and metadata extraction
	Policy/profile compliance testing
	Text extraction
	Link extraction
	Image extraction
	Conversion to other (graphics) formats
	Inspection of embedded image information
	Conversion of multiple images to PDF
	Cross-comparison of two PDFs
	Corrupted PDF repair
	File size reduction of PDF with hi-res graphics
	Inspection of low-level PDF structure
	View, search and extract low-level PDF objects

How this selection came about

Even though this post covers a lot of ground, the selection of tasks and tools presented here is by no means meant to be exhaustive. It was guided to a great degree by the PDF-related issues I’ve encountered myself in my day to day work. Some of these tasks could be done using other tools (including ones that are not mentioned here), and in some cases these other tools may well be better choices. So there’s probably a fair amount of selection bias here, and I don’t want to make any claims of presenting the “best” way to do any of these tasks here. Also, many of the example commands in this post can be further refined to particular needs (e.g. using additional options or alternative output formats), and they should probably best seen as (hopefully useful) starting points for the reader’s own explorations.

All of the tools presented here are published as open-source, and most of them have a command-line interface. They all work under Linux (which is the main OS I’m using these days), but most of them are available for other platforms (including Windows) as well.

PDF multi-tools

Before diving into any specific tasks, let’s start with some general-purpose PDF tools and toolkits. Each of these are capable of a wide range of tasks (including some I won’t explicitly address here), and they can be seen as “Swiss army-knives” of PDF processing. Whenever I need to get some PDF processing or analysis done and I’m not sure what tool to use, these are usually my starting points. In the majority of cases, at least one of them turns out to have the functionality I’m looking for, so it’s a good idea to check them out if you’re not familiar with them already.

Xpdf/Poppler

Xpdf and Poppler are both PDF viewers that include a collection of tools for processing and manipulating PDF files. Poppler is a fork of this software, which adds a number of unique tools that are not part of the original Xpdf package. The tools included with Poppler are:

	pdfdetach: lists or extracts embedded files (attachments)
	pdffonts: analyzes fonts
	pdfimages: extracts images
	pdfinfo: displays document information
	pdfseparate: page extraction tool
	pdfsig: verifies digital signatures
	pdftocairo: converts PDF to PNG/JPEG/PDF/PS/EPS/SVG using the Cairo graphics library
	pdftohtml: converts PDF to HTML
	pdftoppm: converts PDF to PPM/PNG/JPEG images
	pdftops: converts PDF to PostScript (PS)
	pdftotext: text extraction tool
	pdfunite: document merging tool

The tools in Xpdf are largely identical, but don’t include pdfseparate, pdfsig, pdftocairo, and pdfunite. Also, Xpdf has a separate pdftopng tool for converting PDF to PNG images (this functionality is covered by pdftoppn in the Poppler version). On Debian-based systems the Poppler tools are part of the package poppler-utils.

Pdfcpu

Pdfcpu is a PDF processor that is written in the Go language. The documentation explicity mentions its main focus is strong support for batch processing and scripting via a rich command line. It supports all PDF versions up to PDF 1.7 (ISO-32000).

Apache PDFBox

Apache PDFBox is an open source Java library for working with PDF documents. It includes a set of command-line tools for various PDF processing tasks. Binary distributions (as JAR packages) are available here (you’ll need the “standalone” JARs).

QPDF

QPDF is “a command-line program that does structural, content-preserving transformations on PDF files”.

MuPDF

MuPDF is “a lightweight PDF, XPS, and E-book viewer”. It includes the mutool utility, which can do a number of PDF processing tasks.

PDFtk

PDFtk (server edition) is a “command-line tool for working with PDFs” that is “commonly used for client-side scripting or server-side processing of PDFs”. More information can be found in the documentation, and the command-line examples page. For Ubuntu/Linux Mint users, the most straightforward installation option is the “pdftk-java” Debian package. This is a Java fork of PDFtk1.

Ghostscript

Ghostscript is “an interpreter for the PostScript language and PDF files”. It provides rendering to a variety of raster and vector formats.

The remaining sections of this post are dedicated to specific tasks. As you will see, many of these can be addressed using the multi-tools listed in this section.

Validation and integrity testing

PDFs that are damaged, structurally flawed or otherwise not conformant to the PDF format specification can result in a multitude of problems. A number of tools provide error checking and integrity testing functionality. This can range from limited structure checks, to full (claimed) validation against the filespec. It’s important to note that none of the tools mentioned here are perfect, and some faults that are picked up by one tool may be completely ignored by another one and vice versa. So it’s often a good idea to try multiple tools. A good example of this approach can be found in this blog post by Micky Lindlar.

Validate with Pdfcpu

The Pdfcpu command-line tool has a validate command that checks a file’s compliance against PDF 32000-1:2008 (i.e. the ISO version of PDF 1.7). It provides both a “strict” and a “relexed” validation mode, where the “relaxed” mode (which is the default!) ignores some common violations of the PDF specification. The command-line is:

pdfcpu validate whatever.pdf

The “strict” mode can be activated with the -m option:

pdfcpu validate -m strict whatever.pdf

Validate with JHOVE

JHOVE is a is a file format identification, validation and characterisation tool that includes a module for PDF validation. It is widely used in the digital heritage (libraries, archives) sector. Here’s a typical command-line example (note that you explicitly need to invoke the PDF-hul module via the -m option; omitting this can give unexpected results):

jhove -m PDF-hul -i whatever.pdf

Check out the documentation for more information about JHOVE’s PDF module, and its limitations.

Check integrity with QPDF

The --check option of QPDF (see above) performs checks on a PDF’s overall file structure. QPDF does not provide full-fledged validation, and the documentation states that:

 A file for which –check reports no errors may still have errors in stream data content but should otherwise be structurally sound

Nevertheless, QPDF is still useful for detecting various issues, especially in conjunction with the --verbose option. Here’s an example command-line:

qpdf --check --verbose whatever.pdf

Check for Ghostscript rendering errors

Another useful technique is to process a PDF with Ghostscript (rendering the result to a “nullpage” device). For example:

gs -dNOPAUSE -dBATCH -sDEVICE=nullpage whatever.pdf

In case of any problems with the input file, Ghostscript will report quite detailed information. As an example, here’s the output for a PDF with a truncated document trailer:

 **** Error: An error occurred while reading an XREF table.
 **** The file has been damaged. This may have been caused
 **** by a problem while converting or transfering the file.
 **** Ghostscript will attempt to recover the data.
 **** However, the output may be incorrect.
 **** Warning: There are objects with matching object and generation
 **** numbers. The output may be incorrect.
 **** Error: Trailer dictionary not found.
 Output may be incorrect.
 No pages will be processed (FirstPage > LastPage).

 **** This file had errors that were repaired or ignored.
 **** Please notify the author of the software that produced this
 **** file that it does not conform to Adobe's published PDF
 **** specification.

Check for errors with Mutool info command

Running Mutool (part of MuPDF, see above) with the info command returns information about internal pdf resources. In case of broken or malformed files the output includes error messages, which can be quite informative. Here’s an example command-line:

mutool info whatever.pdf

Check for errors with ExifTool

ExifTool is designed for reading, writing and editing meta-information for a plethora of file formats, including PDF. Although it does not do full-fledged validation, it will report error and warning messages for various read issues, and these can be useful for identifying problematic PDFs. For example, here we use ExifTool on a PDF with some internal byte corruption:

exiftool corrupted.pdf

Result:

ExifTool Version Number : 11.88
File Name : corrupted.pdf
Directory : .
File Size : 87 kB
File Modification Date/Time : 2022:02:07 14:36:47+01:00
File Access Date/Time : 2022:02:07 14:37:11+01:00
File Inode Change Date/Time : 2022:02:07 14:36:59+01:00
File Permissions : rw-rw-r--
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.3
Linearized : No
Warning : Invalid xref table

In this case the byte corruption results in an “Invalid xref table” warning. Many other errors and warnings are possible. Check out this blog post by Yvonne Tunnat which discusses PDF “validation” with ExifTool in more detail.

Other options

	
 VeraPDF can provide useful information on damaged or invalid PDF documents. However, VeraPDF is primarily aimed at validation against PDF/A and PDF/UA profiles, which are both subsets of ISO 32000 (which defines the PDF format’s full feature set). As a result, VeraPDF’s validation output can be somewhat difficult to interpret for “regular” PDFS (i.e. documents that are not PDF/A or PDF/UA). Nevertheless, experienced users may find VeraPDF useful for such files as well.

	
 Several online resources recommend the pdfinfo tool that is part of Xpdf and Poppler for integrity checking. However, while writing this post I ran a quick test of the tool on a PDF with a truncated document trailer2 (which is a very serious flaw), which was not flagged by pdfinfo at all.

PDF/A and PDF/UA compliance testing with VeraPDF

PDF/A comprises a set of ISO-standardized profiles that are aimed at long-term preservation. PDF/UA is another ISO-standardized profile that ensures accessibility for people with disabilities. These are not separate file formats, but rather profiles within ISO 32000 that put some constraints on PDF’s full set of features. VeraPDF was originally developed as an open source PDF/A validator that covers all parts of the PDF/A standards. Starting with version 1.18, it also added support for PDF/UA. The following command lists al available validation profiles:

verapdf -l

Result:

 1a - PDF/A-1A validation profile
 1b - PDF/A-1B validation profile
 2a - PDF/A-2A validation profile
 2b - PDF/A-2B validation profile
 2u - PDF/A-2U validation profile
 3a - PDF/A-3A validation profile
 3b - PDF/A-3B validation profile
 3u - PDF/A-3U validation profile
 ua1 - PDF/UA-1 validation profile

When running VeraPDF, use the -f (flavour) option to set the desired validation profile. For example, for PDF/A-1A use something like this3:

verapdf -f 1a whatever.pdf > whatever-1a.xml

And for PDF/UA:

verapdf -f ua1 whatever.pdf > whatever-ua.xml

The documentation provides more detailed instructions on how to use VeraPDF.

Document information and metadata extraction

A large number of tools are capable of displaying or extracting technical characteristics and various kinds of metadata, with varying degrees of detail. I’ll only highlight a few here.

Extract general characteristics with pdfinfo

The pdfinfo tool that is part of Xpdf and Poppler is useful for a quick overview of a document’s general characteristics. The basic command line is:

pdfinfo whatever.pdf

Which gives the following result:

Creator: PdfCompressor 3.1.32
Producer: CVISION Technologies
CreationDate: Thu Sep 2 07:52:56 2021 CEST
ModDate: Thu Sep 2 07:53:20 2021 CEST
Tagged: no
UserProperties: no
Suspects: no
Form: none
JavaScript: no
Pages: 1
Encrypted: no
Page size: 439.2 x 637.92 pts
Page rot: 0
File size: 24728 bytes
Optimized: yes
PDF version: 1.6

Extract metadata with Apache Tika

Apache Tika is a Java library that supports metadata and content extraction for a wide variety of file formats. For command-line use, download the Tika-app runnable JAR from here. By default, Tika will extract both text and metadata, and report both in XHTML format. Tika has several command-line options that this behaviour. A basic metadata extraction command is (you may need to adapt the path and name of the JAR file)):

java -jar ~/tika/tika-app-2.1.0.jar -m whatever.pdf > whatever.txt

Result:

Content-Length: 24728
Content-Type: application/pdf
X-TIKA:Parsed-By: org.apache.tika.parser.DefaultParser
X-TIKA:Parsed-By: org.apache.tika.parser.pdf.PDFParser
access_permission:assemble_document: true
access_permission:can_modify: true
access_permission:can_print: true
access_permission:can_print_degraded: true
access_permission:extract_content: true
access_permission:extract_for_accessibility: true
access_permission:fill_in_form: true
access_permission:modify_annotations: true
dc:format: application/pdf; version=1.6
dcterms:created: 2021-09-02T05:52:56Z
dcterms:modified: 2021-09-02T05:53:20Z
pdf:PDFVersion: 1.6
pdf:charsPerPage: 0
pdf:docinfo:created: 2021-09-02T05:52:56Z
pdf:docinfo:creator_tool: PdfCompressor 3.1.32
pdf:docinfo:modified: 2021-09-02T05:53:20Z
pdf:docinfo:producer: CVISION Technologies
pdf:encrypted: false
pdf:hasMarkedContent: false
pdf:hasXFA: false
pdf:hasXMP: true
pdf:producer: CVISION Technologies
pdf:unmappedUnicodeCharsPerPage: 0
resourceName: whatever.pdf
xmp:CreateDate: 2021-09-02T07:52:56Z
xmp:CreatorTool: PdfCompressor 3.1.32
xmp:MetadataDate: 2021-09-02T07:53:20Z
xmp:ModifyDate: 2021-09-02T07:53:20Z
xmpMM:DocumentID: uuid:2ec84d65-f99d-49fe-9aac-bd0c1fff5e66
xmpTPg:NPages: 1

Tika offers several options for alternative output formats (e.g. XMP and JSON); these are all explained here (section “Using Tika as a command line utility”).

Extract metadata with ExifTool

ExifTool is another good option for metadata extraction. Here’s an example:

exiftool whatever.pdf

Result:

ExifTool Version Number : 11.88
File Name : whatever.pdf
Directory : .
File Size : 24 kB
File Modification Date/Time : 2021:09:02 12:23:32+02:00
File Access Date/Time : 2022:02:07 15:04:11+01:00
File Inode Change Date/Time : 2021:09:02 15:27:38+02:00
File Permissions : rw-rw-r--
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.6
Linearized : Yes
Create Date : 2021:09:02 07:52:56+02:00
Creator : PdfCompressor 3.1.32
Modify Date : 2021:09:02 07:53:20+02:00
XMP Toolkit : Adobe XMP Core 5.6-c017 91.164464, 2020/06/15-10:20:05
Metadata Date : 2021:09:02 07:53:20+02:00
Creator Tool : PdfCompressor 3.1.32
Format : application/pdf
Document ID : uuid:2ec84d65-f99d-49fe-9aac-bd0c1fff5e66
Instance ID : uuid:28d0af59-9373-4358-88f2-c8c4db3915ed
Producer : CVISION Technologies
Page Count : 1

ExifTool can also write the extracted metadata to a variety of output formats, which is explained in the documentation.

Extract metadata from embedded documents

One particularly useful feature of Tika is its ability to deal with embedded documents. As an example, this file is a PDF portfolio, which can contain multiple files and file types. Invoking Tika with the -J (“output metadata and content from all embedded files”) option results in JSON-formatted output that contains metadata (and also extracted text) for all for all files that are embedded in this document:

java -jar ~/tika/tika-app-2.1.0.jar -J digitally_signed_3D_Portfolio.pdf > whatever.json

Elaborate feature extraction with VeraPDF

Although primarily aimed at PDF/A validation, VeraPDF can also be used as a powerful metadata and feature extractor for any PDF file (including files that don’t follow the PDF/A or PDF/UA at all!). By default, VeraPDF is configured to only extract metadata from a PDF’s information dictionary, but this behaviour can be easily changed by modifying a configuration file, which is explained in the documentation. This enables you to obtain detailed information about things like Actions, Annotations, colour spaces, document security features (including encryption), embedded files, fonts, images, and much more. Then use a command line like4:

verapdf --off --extract whatever.pdf > whatever.xml

VeraPDF can also be used to recursively process all files with a .pdf extension in a directory tree, using the following command-line (here, myDir is the root of the directory tree):

verapdf --recurse --off --extract myDir > whatever.xml

The VeraPDF documentation discusses the feature extraction functionality in more detail.

Policy or profile compliance assessment with VeraPDF

The results of the feature extraction exercise described in the previous section can also be used as input for policy-based assessments. For instance, archival institutions may have policies that prohibit e.g. PDFs with encryption or fonts that are not embedded. This can also be done with VeraPDF. This requires that the rules that make up the policy are expressed as a machine-readable Schematron file. As an example, the Schematron file below is made up of two rules that each prohibit specific encryption-related features:

<?xml version="1.0"?>

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt">
 <sch:pattern name="Disallow encrypt in trailer dictionary">
 <sch:rule context="/report/jobs/job/featuresReport/documentSecurity">
 <sch:assert test="not(encryptMetadata = 'true')">Encrypt in trailer dictionary</sch:assert>
 </sch:rule>
 </sch:pattern>

 <sch:pattern name="Disallow other forms of encryption (e.g. open password)">
 <sch:rule context="/report/jobs/job/taskResult/exceptionMessage">
 <sch:assert test="not(contains(.,'encrypted'))">Encrypted document</sch:assert>
 </sch:rule>
 </sch:pattern>

</sch:schema>

A PDF can subsequently be tested against these rules (here in the file “policy.sch”) using the following basic command-line:

verapdf --extract --policyfile policy.sch whatever.pdf > whatever.xml

The outcome of the policy-based assessment can be found in the output file’s policyReport element. In the example below, the PDF did not meet one of the rules:

<policyReport passedChecks="0" failedChecks="1" xmlns:vera="http://www.verapdf.org/MachineReadableReport">
 <passedChecks/>
 <failedChecks>
 <check status="failed" test="not(encryptMetadata = 'true')" location="/report/jobs/job/featuresReport/documentSecurity">
 <message>Encrypt in trailer dictionary</message>
 </check>
 </failedChecks>
</policyReport>

More examples can be found in my 2017 post Policy-based assessment with VeraPDF - a first impression.

Text extraction

Text extraction from PDF documents is notoriously hard. This post gives a good overview of the main pitfalls. Tim Allison’s excellent Brief Overview of the Portable Document Format (PDF) and Some Challenges for Text Extraction provides a more in-depth discussion, and this really is a must-read for anyone seriously interested in this subject. With that said, quite a few tools are available, and below I list a few that are useful starting points.

Extract text with pdftotext

The pdftotext tool that is part of Poppler and Xpdf is a good starting point. The basic command-line is:

pdftotext whatever.pdf whatever.txt

The tool has lots of options to fine-tune the default behaviour, so make sure to check those out if you’re looking for. Note that the available options vary somewhat between the Poppler and Xpdf versions. The documentation of the Poppler version is available here, and here is the Xpdf version.

Extract text with PDFBox

PDFBox is also a good choice for text extraction. Here’s an example command (you may need to adapt the path to the JAR file and its name according to the location and version on your system):

java -jar ~/pdfbox/pdfbox-app-2.0.24.jar ExtractText whatever.pdf whatever.txt

PDFBox also provides various options, which are documented here.

Extract text with Apache Tika

I already mentioned Apache Tika in the metadata extraction section. Tika is also a powerful text extraction tool, and it is particularly useful for situations where text extraction from multiple input formats is needed. For PDF it uses the PDF parser of PDFBox (see previous section). By default, Tika extracts both text and metadata, and reports both in XHTML format. If needed, you can change this behaviour with the --text option:

java -jar ~/tika/tika-app-2.1.0.jar --text whatever.pdf > whatever.txt

Again, an explanation of all available options is available here (section “Using Tika as a command line utility”).

Batch processing with Tika

The above single-file command does not scale well for situations that require the processing of large volumes of PDFs5. In such cases, it’s better to run Tika in batch mode. As an example, the command below will process all files in directory “myPDFs”, and store the results in output directory “tika-out”6:

java -jar ~/tika/tika-app-2.1.0.jar --text -i ./myPDFs/ -o ./tika-out/

Alternatively, you could use TikaServer. A runnable JAR is available here. To use it, first start the server using:

java -jar ~/tika/tika-server-standard-2.1.0.jar

Once the server is running, use cURL (from another terminal window) to submit text extraction requests:

curl -T whatever.pdf http://localhost:9998/tika --header "Accept: text/plain" > whatever.txt

The full TikaServer documentation is available here.

Yet another option is Tika-python, which is a Python port of Tika that uses TikaServer under the hood (resulting in similar performance).

Link extraction

When extracting (hyper)links, it’s important to make a distinction between the following two cases:

	Links that are encoded as a “link annotation”, which is a data structure in PDF that results in a clickable link
	Non-clickable links/URLs that are just part of the body text.

The automated extraction of the first case is straightforward, while the second case depends on some kind of lexical analysis of the body text (typically based on regular expressions). For most practical applications the extraction of both types is desired.

Extract links with pdfx

The pdfx tool is designed to detect and extract external references, including URLs. Its URL detection uses lexical analysis, and is based on RegEx patterns written by John Gruber. The basic command line for URL extraction is:

pdfx -v whatever.pdf > whatever.txt

I did some limited testing with this tool in 2016. One issue I ran into is that pdfx truncates URLS that span more than one line. As of 2021, this issue hasn’t been fixed so far, which seriously limits the usefulness of this (otherwise very interesting) tool. It’s worth mentioning that pdfx also provides functionality to automatically download all referenced PDFs from any PDF document. I haven’t tested this myself.

Other link extraction tools

	
 Some years ago Ross Spencer wrote a link extraction tool that uses Apache Tika. There’s more info in this blog post.

	
 Around the same time I wrote this simple extraction script that wraps around Apache Tika and the xurl tool. I used this to extract URLs from MS Word documents, but this should probably work for PDF too (I haven’t tested this though!).

Image extraction with pdfimages

PDFs often contain embedded images, which can be extracted with pdfimages tool that is part of Xpdf/Poppler. At minimum, it takes as its arguments the name of the input PDF document, and the “image-root” which is actually just a text prefix that is used to generate the name of the output images. By default it writes its output to one of the Netpbm file formats, but for convenience you might want to use the -png option, which uses the PNG format instead:

pdfimages -png whatever.pdf whatever

Output images are now written as “whatever-000.png”, “whatever-001.png”, “whatever-002.png”, and so on. The -j, -jp2, -jbig2 and -ccitt switches can be used to store JPEG, JPEG2000, JBIG2 and CCITT images in their native formats, respectively (or use -all, which combines all of these options).

Conversion to other (graphics) formats with pdftocairo

The pdftocairo tool (Xpdf/Poppler) can convert a PDF to a number of (mostly graphics) formats. The supported output formats are PNG, JPEG, TIFF, PostScript, Encapsulated PostScript, Scalable Vector Graphics and PDF. As an example, the following command will convert each page to a PNG image:

pdftocairo -png whatever.pdf

List embedded image information with pdfimages

The pdfimages tool is also useful for getting an overview of all embedded images in a PDF, and their main characteristics (width, height, colour, encoding, resolution and size). just user the -list option as shown below:

pdfimages -list whatever.pdf

This results in a nice table like this:

page num type width height color comp bpc enc interp

 1 0 image 1830 2658 gray 1 1 jbig2 no
 1 1 image 600 773 gray 1 8 jpx no

page object ID x-ppi y-ppi size ratio
--
 1 16 0 301 301 99B 0.0%
 1 17 0 300 300 17.9K 4.0%

Conversion of multiple image files to PDF

Losslessly convert raster images to pdf with img2pdf

The img2pdf tool converts a list of image files to PDF. Unlike several other tools (such as ImageMagick), it does not re-encode the source images, but simply embeds them as PDF objects in their original formats. This means that the conversion is always lossless. The following example shows how to convert three JP2 (JPEG 200 Part 1) images:

img2pdf image1.jp2 image2.jp2 image3.jp2 -o whatever.pdf

In the resulting PDF, each image is embedded as an image stream with the JPXDecode (JPEG 2000) filter.

PDF comparison with Comparepdf

The Comparepdf7 tool compares pairs of PDFs, based on either text or visual appearance. By default it uses the program exit code to store the result of the comparison. The tool’s command-line help text explains the possible outcomes:

 A return value of 0 means no differences detected; 1 or 2 signifies an error; 10 means they differ visually, 13 means they differ textually, and 15 means they have different page counts

For clarity I used the -v switch in the examples below, which activates verbose output. To test if two PDFs contain the same text, use:

comparepdf -ct -v=2 whatever.pdf wherever.pdf

If al goes well the output is either “No differences detected” or “Files have different texts”.

To compare the visual appearance of two PDFs, use:

comparepdf -ca -v=2 whatever.pdf wherever.pdf

In this case the output either shows “No differences detected” or “Files look different”.

Repair a corrupted PDF

Sometimes it is possible to recover the contents of corrupted or otherwise damaged PDF documents. This thread on Super User mentions two useful options.

Repair with Ghostscript

gs -o whatever_repaired.pdf -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress whatever_corrupted.pdf

Repair with pdftocairo

A second option mentioned in the Super User thread is pdftocairo, which is part of Xpdf and Poppler:

pdftocairo -pdf whatever_corrupted.pdf whatever_repaired.pdf

It’s worth adding here that the success of any repair action largely depends on the nature and extent of the damage/corruption, so your mileage may very. Always make sure to carefully check the result, and keep a copy of the original file.

Repair with PDFtk

Finally, pdftk can, according to its documentation, “repair a PDF’s corrupted XREF table and stream lengths, if possible”. This uses the following command line:

pdftk whatever_corrupted.pdf output whatever_repaired.pdf

Reduce size of PDF with hi-res images with Ghostscript

The following Ghostscript command (source here can be useful to reduce the size of a large PDF with high-resolution graphics (note that this will result in quality loss):

gs -sDEVICE=pdfwrite \
 -dCompatibilityLevel=1.4 \
 -dPDFSETTINGS=/ebook \
 -dNOPAUSE -dQUIET -dBATCH \
 -sOutputFile=whatever_small.pdf whatever_large.pdf

Reduce size of PDF with hi-res images with ImageMagick

As an alternative to the above Ghostscript command (which achieves a size reduction mainly by downsampling the images in the PDF to as lower resolution), you can also use ImageMagick’s convert tool. This allows you to reduce the file size by changing any combination of resolution (-density option), compression type (-compress option) and compression quality (-quality option).

For example, the command below (source here) reduces the size of a source PDF by re-encoding all images as JPEGs with 70% quality at 300 ppi resolution:

convert -density 300 \
 -compress jpeg \
 -quality 70 \
 whatever_large.pdf whatever_small.pdf

If the -density value is omitted, convert resamples all images to 72 ppi by default. If you don’t want that, make sure to set the -density value to the resolution of your source PDF (see the section “List embedded image information with pdfimages” on how to do that).

Even though ImageMagick’s convert tool uses Ghostscript under the hood, it doesn’t preserve any text (and probably most other features) of the source PDF, so only use this if you’re only interested in the image data!

Inspect low-level PDF structure

The following tools are useful for inspecting and browsing the internal (low-level object) structure of PDF files.

Inspect with PDFBox PDFDebugger

PDFBox includes a “PDF Debugger”, which you can start with the following command:

java -jar ~/pdfbox/pdfbox-app-2.0.24.jar PDFDebugger whatever.pdf

Subsequently a GUI window pops up that allows you to browse the PDF’s internal objects:

 Screenshot of PDFBOX PDFDebugger.

Inspect with iText RUPS

The itext RUPS viewer provides similar functionality to PDF Debugger. You can download a self-contained runnable JAR here (select the “only-jars” ZIP file). Run it using:

java -jar ~/itext-rups/itext-rups-7.1.16.jar

Then open a PDF from the GUI, and browse your way through its internal structure:

 Screenshot of iText RUPS.

View, search and extract PDF objects with mutool show

Mutool’s show command allows you to print user-defined low-level PDF objects to stdout. A couple of things you can do with this:

	Print the document trailer:
 mutool show whatever.pdf trailer

 Result:

 trailer
<<
/DecodeParms <<
 /Columns 3
 /Predictor 12
>>
/Filter /FlateDecode
/ID [<500AB94E8F45C149808B2EEE98528B78> <431017E495216040A953126BB73D0CD4>]
/Index [11 10]
/Info 10 0 R
/Length 47
/Prev 24426
/Root 12 0 R
/Size 21
/Type /XRef
/W [1 2 0]
>>

	Print the cross-reference table:
 mutool show whatever.pdf xref

 Result:

 xref
0 21
00000: 0000000000 00000 f
00001: 0000019994 00000 n
00002: 0000020399 00000 n
00003: 0000020534 00000 n
::
etc

	Print an indirect object by its number:
 mutool show whatever.pdf 12

 Result:

 12 0 obj
<<
/Metadata 4 0 R
/Pages 9 0 R
/Type /Catalog
>>
endobj

	Extract only stream contents as raw binary data and write to a new file:
 mutool show -b whatever.pdf 151 > whatever.dat

 This command is particularly useful for extracting the raw data from a stream object (e.g. an image or multimedia file).

More advanced queries are possible as well. For example, the mutool manual gives the following example, which shows all JPEG compressed stream objects in a file:

mutool show whatever.pdf grep | grep '/Filter/DCTDecode'

Result:

1 0 obj <</BitsPerComponent 8/ColorSpace/DeviceRGB/Filter/DCTDecode/Height 516/Length 76403/Subtype/Image/Type/XObject/Width 1226>> stream
18 0 obj <</BitsPerComponent 8/ColorSpace/DeviceRGB/Filter/DCTDecode/Height 676/Length 149186/Subtype/Image/Type/XObject/Width 1014>> stream
19 0 obj <</BitsPerComponent 8/ColorSpace/DeviceRGB/Filter/DCTDecode/Height 676/Length 142232/Subtype/Image/Type/XObject/Width 1014>> stream
24 0 obj <</BitsPerComponent 8/ColorSpace/DeviceRGB/Filter/DCTDecode/Height 676/Length 192073/Subtype/Image/Type/XObject/Width 1014>> stream
25 0 obj <</BitsPerComponent 8/ColorSpace/DeviceRGB/Filter/DCTDecode/Height 676/Length 141081/Subtype/Image/Type/XObject/Width 1014>> stream

Final remarks

I intend to make this post a “living” document, and will add more PDF “recipes” over time. Feel free to leave a comment in case you spot any errors or omissions!

Update on Hacker News topic

Someone created a Hacker News topic on this post. The comments mention some additional tool suggestions that look useful. I might add some of these to a future revision.

Further resources

	Moritz Mähr, “Working with batches of PDF files”, The Programming Historian 9 (2020)
	PDF tools in Community Owned Digital Preservation Tool Registry (COPTR)
	Policy-based assessment with VeraPDF - a first impression
	What’s so hard about PDF text extraction?
	Tim Allison, “Brief Overview of the Portable Document Format (PDF) and Some Challenges for Text Extraction”
	Yvonne Tunnat, “PDF Validation with ExifTool – quick and not so dirty”
	Micky Lindlar, “Trouble-shooting PDF validation errors – a case of PDF-HUL-38”
	Hacker News topic on this post

Revision history

	7 September 2021: added sections on metadata extraction and Tika batch processing, following suggestions by Tim Allison.
	8 September 2021: added section on inspecting low-level PDF structure with iText RUPS, as suggested by Mark Stephens; added sections on PDFtk as suggested by Tyler Thorsted; corrected errors in pdftocairo and gs examples.
	9 September 2021: added section on image to PDF conversion.
	27 January 2022: added reference to Tim Allison’s article on PDF text extraction.
	7 February 2022: added sections on Exiftool, and added reference to Yvonne Tunnat’s blog post on PDF validation with ExifTool.
	10 October 2022: added update on and link to Hacker News topic on this post.
	28 November 2022: added reference to Micky Lindlar’s blog post on trouble-shooting PDF validation errors.
	16 February 2023: added section on reducing PDF file size with ImageMagick’s convert tool.

 	
 The Debian package of the “original” PDFtk software was removed from the Ubuntu repositories around 2018 due to “dependency issues”. ↩

	
 Command line: pdfinfo whatever.pdf ↩

	
 In this example output is redirected to a file; this is generally a good idea because of the amount of XML output generated by VeraPDF. ↩

	
 The --off switch disables PDF/A validation. Output is redirected to a file (recommended because, depending on the configuration used, VeraPDF can generate a lot of output). ↩

	
 This is because a new Java VM is started for each processed PDF, which will result in poor performance. ↩

	
 Of course this also works for metadata extraction, and both text and metadata extraction can be combined in one single command. As an example, the following command will extract both text and metadata, including any embedded documents: java -jar ~/tika/tika-app-2.1.0.jar -J --text -i ./myPDFs/ -o ./tika-out/ ↩

	
 On Debian-based systems you can install it using sudo apt install comparepdf. ↩

 	

 Apache-Tika
 	Extracting text from EPUB files in Python
	PDF processing and analysis with open-source tools
	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot

	

 JHOVE
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Breaking WAVEs (and some FLACs too)
	Why can't we have digital preservation tools that just work?
	A simple JP2 file structure checker

	

 PDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	PDF/A as a preferred, sustainable format for spreadsheets?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	When (not) to migrate a PDF to PDF/A
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	What do we mean by "embedded" files in PDF?
	Identification of PDF preservation risks with Apache Preflight: a first impression
	PDF – Inventory of long-term preservation risks

	

 preservation-risks
 	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Does Microsoft OneDrive export large ZIP files that are corrupt?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	Measuring Bigfoot
	Assessing file format risks: searching for Bigfoot?
	PDF – Inventory of long-term preservation risks
	EPUB for archival preservation

	

 VeraPDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

 	← Previous
	Next →

 Comments

	
	 Post comment (Github)
	

 About

 Search

	
	
 Tags

 	

 Android
 	Towards a preservation workflow for mobile apps
	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 Apache-Preflight
 	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	Identification of PDF preservation risks with Apache Preflight: a first impression

	

 Apache-Tika
 	Extracting text from EPUB files in Python
	PDF processing and analysis with open-source tools
	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot

	

 APK
 	Towards a preservation workflow for mobile apps

	

 Debian
 	Adventures in Debian packaging
	Update on jpylyzer

	

 digital-dark-age
 	How to preserve your personal Twitter archive
	Wheel Out the Digital Dark Age Klaxon!

	

 digital-preservation-day
 	Wheel Out the Digital Dark Age Klaxon!

	

 disk-imaging
 	Writing yet another workflow tool for imaging portable media
	Identification of physical storage media and devices with Python and the Windows API
	A simple disk imaging workflow tool

	

 diskimgr
 	A simple disk imaging workflow tool

	

 DNS
 	Moving my Internet domains

	

 DROID
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 e-depot
 	Top 50 file formats in the KB e-Depot

	

 emulation
 	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 EPUB
 	Extracting text from EPUB files in Python
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Valid, but not accessible: crazy fixed EPUB layouts
	The future of EPUB? A first look at the EPUB 3.1 Editor’s draft
	Policy-based assessment of EPUB with Epubcheck
	EPUB for archival preservation: an update
	EPUB for archival preservation

	

 EPUBCheck
 	Policy-based assessment of EPUB with Epubcheck
	EPUB for archival preservation: an update

	

 Fido
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 FITS
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE

	

 FLAC
 	Breaking WAVEs (and some FLACs too)

	

 floppy-disks
 	Writing yet another workflow tool for imaging portable media
	Identification of physical storage media and devices with Python and the Windows API
	Offline digital data carriers in the KB deposit collection
	A simple disk imaging workflow tool

	

 format-identification
 	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot
	Magic editing and creation: a primer
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 format-validation
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset

	

 geodata
 	Mapping the Dutch web domain
	Web domain geolocation and spatial analysis with QGIS

	

 GitHub-Pages
 	Moving my Internet domains

	

 GW-BASIC
 	A prototype JP2 validator and properties extractor

	

 HFS
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs

	

 High-Sierra
 	Introducing Isolyzer 1.4

	

 internet
 	Moving my Internet domains

	

 iOS
 	Towards a preservation workflow for mobile apps

	

 IPA
 	Towards a preservation workflow for mobile apps

	

 iromlab
 	Image and Rip Optical Media Like A Boss!

	

 ISO-9660
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer
	Preserving optical media from the command-line

	

 isolyzer
 	Introducing Isolyzer 1.4
	A simple workflow tool for imaging optical media using readom and ddrescue
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer

	

 JHOVE
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Breaking WAVEs (and some FLACs too)
	Why can't we have digital preservation tools that just work?
	A simple JP2 file structure checker

	

 JHOVE2
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE

	

 JP2
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Response to report on JPEG 2000 expert round table
	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Optimising archival JP2s for the derivation of access copies
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker
	Paper on JPEG 2000 for preservation
	Ensuring the suitability of JPEG 2000 for preservation

	

 jpeg-2000
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Response to report on JPEG 2000 expert round table
	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Optimising archival JP2s for the derivation of access copies
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker
	Paper on JPEG 2000 for preservation
	Ensuring the suitability of JPEG 2000 for preservation

	

 jpylyzer
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Adventures in Debian packaging
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker

	

 magic
 	Magic editing and creation: a primer

	

 Microsoft
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

	

 omimgr
 	A simple workflow tool for imaging optical media using readom and ddrescue

	

 OneDrive
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

	

 optical-media
 	Identification of physical storage media and devices with Python and the Windows API
	Introducing Isolyzer 1.4
	Offline digital data carriers in the KB deposit collection
	A simple workflow tool for imaging optical media using readom and ddrescue
	Resurrecting the first Dutch web index: NL-menu revisited
	Update on Isolyzer: UDF, HFS+ and more!
	Image and Rip Optical Media Like A Boss!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer
	Breaking WAVEs (and some FLACs too)
	Preserving optical media from the command-line

	

 packaging
 	Adventures in Debian packaging
	Update on jpylyzer

	

 PDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	PDF/A as a preferred, sustainable format for spreadsheets?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	When (not) to migrate a PDF to PDF/A
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	What do we mean by "embedded" files in PDF?
	Identification of PDF preservation risks with Apache Preflight: a first impression
	PDF – Inventory of long-term preservation risks

	

 preservation-risks
 	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Does Microsoft OneDrive export large ZIP files that are corrupt?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	Measuring Bigfoot
	Assessing file format risks: searching for Bigfoot?
	PDF – Inventory of long-term preservation risks
	EPUB for archival preservation

	

 python
 	Extracting text from EPUB files in Python
	Identification of physical storage media and devices with Python and the Windows API

	

 Quattro-Pro
 	Quattro Pro for DOS: an obsolete format at last?

	

 rant
 	Why can't we have digital preservation tools that just work?

	

 schematron
 	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Policy-based assessment of EPUB with Epubcheck
	Automated assessment of JP2 against a technical profile

	

 Siegfried
 	Towards a preservation workflow for mobile apps

	

 significant-properties
 	On The Significant Properties of Spreadsheets

	

 spreadsheets
 	On The Significant Properties of Spreadsheets
	PDF/A as a preferred, sustainable format for spreadsheets?
	Quattro Pro for DOS: an obsolete format at last?

	

 tapeimgr
 	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	Roll the tape - recovering '90s data tapes in BitCurator

	

 tapes
 	Identification of physical storage media and devices with Python and the Windows API
	Offline digital data carriers in the KB deposit collection
	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	Roll the tape - recovering '90s data tapes in BitCurator

	

 TIFF
 	On The Significant Properties of Spreadsheets

	

 Twitter
 	How to preserve your personal Twitter archive

	

 UDF
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs

	

 unix-file
 	Towards a preservation workflow for mobile apps
	Magic editing and creation: a primer
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 VeraPDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

	

 virtualization
 	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 WAVE
 	Breaking WAVEs (and some FLACs too)

	

 web-archaeology
 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web
	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	A simple disk imaging workflow tool
	Roll the tape - recovering '90s data tapes in BitCurator
	Crawling offline web content: the NL-menu case
	Resurrecting the first Dutch web index: NL-menu revisited

	

 web-archiving
 	How to preserve your personal Twitter archive
	Mapping the Dutch web domain
	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web
	Web domain geolocation and spatial analysis with QGIS
	Crawling offline web content: the NL-menu case
	Resurrecting the first Dutch web index: NL-menu revisited
	Dutch newspaper wipes out articles citing fabricated sources - Internet Archive to the rescue!
	Perdiep Ramesar in het Internet Archive
	Demise of the Dutch Blogosphere
	How to save a web page to the Internet Archive

	

 XS4ALL
 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web

	

 ZIP
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

 Archive

 2023
 June

 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset

 May

 	Identification of PDF preservation risks with VeraPDF and JHOVE

 March

 	Extracting text from EPUB files in Python

 February

 	Moving my Internet domains

 January

 	Writing yet another workflow tool for imaging portable media

 2022
 November

 	How to preserve your personal Twitter archive
	Wheel Out the Digital Dark Age Klaxon!

 June

 	Identification of physical storage media and devices with Python and the Windows API

 April

 	Introducing Isolyzer 1.4

 March

 	Generating lossy access JP2s from lossless preservation masters

 2021
 September

 	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools

 February

 	Towards a preservation workflow for mobile apps
	Four Android emulators, two apps

 2020
 September

 	Mapping the Dutch web domain

 June

 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web

 April

 	ISO/IEC TS 22424 standard on EPUB3 preservation

 March

 	Does Microsoft OneDrive export large ZIP files that are corrupt?

 February

 	Offline digital data carriers in the KB deposit collection
	Web domain geolocation and spatial analysis with QGIS

 2019
 September

 	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)

 April

 	A simple disk imaging workflow tool

 March

 	A simple workflow tool for imaging optical media using readom and ddrescue

 January

 	Roll the tape - recovering '90s data tapes in BitCurator

 2018
 July

 	Crawling offline web content: the NL-menu case

 April

 	Resurrecting the first Dutch web index: NL-menu revisited

 2017
 July

 	Update on Isolyzer: UDF, HFS+ and more!

 June

 	Image and Rip Optical Media Like A Boss!
	Policy-based assessment with VeraPDF - a first impression

 April

 	Imaging CD-Extra / Blue Book discs

 January

 	Detecting broken ISO images: introducing Isolyzer
	Breaking WAVEs (and some FLACs too)

 2016
 December

 	PDF/A as a preferred, sustainable format for spreadsheets?

 April

 	Valid, but not accessible: crazy fixed EPUB layouts

 March

 	The future of EPUB? A first look at the EPUB 3.1 Editor’s draft

 2015
 December

 	Jpylyzer 2015 round-up

 November

 	Preserving optical media from the command-line

 October

 	Response to report on JPEG 2000 expert round table

 July

 	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

 April

 	Top 50 file formats in the KB e-Depot

 March

 	Policy-based assessment of EPUB with Epubcheck

 January

 	Dutch newspaper wipes out articles citing fabricated sources - Internet Archive to the rescue!

 2014
 December

 	Perdiep Ramesar in het Internet Archive

 November

 	Demise of the Dutch Blogosphere

 October

 	Quattro Pro for DOS: an obsolete format at last?
	Running archived Android apps on a PC: first impressions

 September

 	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs

 August

 	When (not) to migrate a PDF to PDF/A
	How to save a web page to the Internet Archive

 January

 	Why can't we have digital preservation tools that just work?
	Identification of PDF preservation risks: analysis of Govdocs selected corpus

 2013
 October

 	Measuring Bigfoot

 September

 	Assessing file format risks: searching for Bigfoot?

 August

 	Optimising archival JP2s for the derivation of access copies

 July

 	Identification of PDF preservation risks with Apache Preflight: the sequel
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper

 May

 	EPUB for archival preservation: an update

 April

 	Adventures in Debian packaging

 January

 	What do we mean by "embedded" files in PDF?

 2012
 December

 	Identification of PDF preservation risks with Apache Preflight: a first impression

 September

 	Automated assessment of JP2 against a technical profile

 August

 	Magic editing and creation: a primer

 July

 	PDF – Inventory of long-term preservation risks

 June

 	EPUB for archival preservation

 April

 	Update on jpylyzer

 January

 	Jpylyzer documentation

 2011
 December

 	A prototype JP2 validator and properties extractor

 September

 	Evaluation of identification tools: first results from SCAPE
	A simple JP2 file structure checker

 July

 	Improved identification of XML: a Python experiment

 June

 	Paper on JPEG 2000 for preservation

 2010
 December

 	Ensuring the suitability of JPEG 2000 for preservation

 Issues

 Report a problem with this site

 Hackers Hall of Fame

 Social

 Mastodon (digipres.club)

 Feeds

 RSS

 ATOM

 © 2024 Johan van der Knijff. All content on this blog is licensed under a Creative Commons Attribution 4.0 International License, unless indicated otherwise. Created using Jekyll Bootstrap
 and Twitter Bootstrap.

	

