

		 digital preservation - file formats

 Identification of PDF preservation risks with VeraPDF and JHOVE

 25 May 2023

 "Rock 'em Sock 'em Robots Game" by Lorie Shaull, used under CC BY-SA 4.0, via Wikimedia Commons.

The PDF format has a number of features that don’t sit well with the aims of long-term preservation and accessibility. This includes encryption and password protection, external dependencies (e.g. fonts that are not embedded in a document), and reliance on external software. In this post I’ll review to what extent such features can be detected using VeraPDF and JHOVE. It further builds on earlier work I did on this subject between 2012 and 2017.

Context of this work

In 2019 the KB published its current preservation policy for its digital collections. The policy expresses a number of preservation-related goals for the upcoming years. One of these is a (gradual) move from pure bit preservation towards full functional preservation. To this end, the KB has defined three “knowledge levels”, which are linked to file formats1:

	For stored formats, only bit preservation is done, without any formal format identification (no PRONOM identifier).
	For identified formats, formal format identification has resulted in a PRONOM identifier.
	For known formats, format validation has been performed, and technical metadata have been extracted. This information can then be used to identify preservation-related risks at the level of individual files, and actions to mitigate these risks can be taken if necessary.

The move from bit preservation to functional preservation involves raising the “knowledge level” status of the formats in our digital collections from “stored” (which is the current situation) to “identified” or, ideally, “known”. This development coincides with the ongoing migration of these collections to our new Rosetta archiving system.

PDF preservation risks

Being one of the most prevalent formats in our collections, it comes as no surprise that PDF is one of the first formats for which we want to raise the current knowledge level. This is why my colleagues at our digital preservation department asked me take a new dive into PDF features that are potential preservation risks, and, more importantly, how to detect such features with existing software tools.

As long-term readers may remember, risk detection in PDF isn’t an unfamiliar subject to me. Between 2012 and 2014 I experimented with detecting “risky” PDF features using the open-source Apache PDFBox software2. This work was done as part of the SCAPE project. In 2017 I repeated some of the SCAPE-era experiments, this time using VeraPDF. For various reasons that work never saw a proper follow-up, but six years onwards it’s finally on the agenda once again! In the meantime others have produced relevant related work as well. The PDF Significant Properties Spreadsheet by Tyler Thorsted (currently at Brigham Young University) deserves a special mention here. It gives an overview of metadata fields and technical properties that are reported by 12 different software tools.

PDF features and risks

Before going any further, it’s important to be clear about our definition of preservation risks, and how they are related to PDF features. For this analysis I largely followed the earlier work that I mentioned above as a starting point. This means the focus is mostly on the following features and their associated risks:

	Encryption and security-related features. The associated risks are restricted functionality (e.g. text access, copying, printing), or files that are inaccessible altogether (because they can only be opened using a password).
	External dependencies, such as fonts that are not embedded, or dependencies on external documents. The associated risk is that that documents may not render as originally intended if the external resources are not available.
	Multimedia features, including 3-D content. The associated risk is that the multimedia content may not render without dedicated software.
	File attachments. The associated risk is that attached files may require external software to render.
	JavaScript. This presents various risks, which are mostly security-related.

This list is not exhaustive, but it provides a useful starting point. Deviations from the format specification (PDF validity) can also pose potential preservation risks. Opinions are divided about the importance of format validity in actual practice. PDF format validation is a huge subject in its own right3, which is out of the scope of the current analysis.

VeraPDF vs JHOVE

The 2017 analysis already showed that VeraPDF was able to detect most risk-associated PDF features, which made the inclusion of VeraPDF an obvious choice for this follow-up. VeraPDF is currently not included in Rosetta, and my colleagues wondered to what extent JHOVE (which is part of Rosetta’s default setup) would be up to the job. So, in the remainder of this blog post I will present a comparison of VeraPDF and JHOVE.

It’s important to mention that VeraPDF and JHOVE have different (but partially overlapping) scopes and functionalities. VeraPDF was primarily written to test for conformance against the various PDF/A profiles, with recent versions also supporting (partial) conformance testing for PDF/UA. It does not (or at best only to a limited degree) validate the lower-level data structures that make up a PDF file. The latter is the primary domain of JHOVE’s PDF module, which was designed for “full on” PDF validation4. The main overlap between VeraPDF and JHOVE lies in their ability to extract metadata and technical features, and for the current analysis I have only looked at this particular functionality of both tools.

The following table shows the evaluated VeraPDF and JHOVE versions:

	Software	Version
	VeraPDF	1.22.3
	JHOVE	1.28.0

By default, VeraPDF’s feature extraction mode only extracts metadata from a PDF’s document information dictionary. This is not sufficient for the purpose of this analysis, so I updated VeraPDF’s configuration and enabled all feature extraction types5.

Methods and test data

I used 3 different data sets for this analysis. First, used the PDF Cabinet of Horrors corpus. This is a small, hand-curated corpus of PDFs that is part of the Open Preservation Foundation’s file format corpus. Since this is an annotated dataset with files that have known features (such as security-related features, non-embedded fonts, and multimedia), it provides excellent ground truth. I ran VeraPDF and JHOVE on all files in this data set, and scrutinised the resulting output files in detail. The main goal of this part of the analysis (which is presented in detail in the next section) was twofold:

	Establish to what extent VeraPDF and JHOVE are able to detect the known features in these files.
	Identify broad patterns in VeraPDF’s and JHOVE’s output that are associated with potential preservation risks.

The results then served as input for a second test, which is based on a subset of files from the (now defunct) Adobe Acrobat Engineering website.

Finally, I tested how well VeraPDF and JHOVE are able to handle PDF 2.0 documents by running them on the PDF Association’s PDF 2.0 examples dataset.

Advance warning

The level of detail in the following sections may be too much for some (most?) readers to digest, except perhaps for the most hardcore PDF freaks (you know who you are!). This applies in particular to the “Horror Corpus” section. If this is the case, you may want to skip right to the “Discussion” section from here. Otherwise, now is the time to fasten your seatbelts!

Analysis of Horror Corpus

I will start with a rather detailed analysis of the Horror Corpus, as this is an annotated corpus of files with known features. Each of the following sub-sections covers one “risky” feature, which is demonstrated by one or more files in the Horror Corpus. For each feature, I show how it is represented in VeraPDF’s and JHOVE’s output (if it is represented at all). Even though this only covers a limited selection of “risky” features, this analysis is useful to get a first impression of the differences between VerapDF and JHOVE. It also enables us to identify which parts of the output of both tools are of potential interest for further perusal.

Open password

Test files

	File	Description
	encryption_openpassword.pdf	Opening the document requires password.

 Adobe Acrobat dialog on opening a PDF with an open password.

VeraPDF

For this file, VeraPDF reports an exception (full output here):

<taskResult type="PARSE" isExecuted="true" isSuccess="false">
 <duration start="1683818755295" finish="1683818755343">00:00:00.048</duration>
 <exceptionMessage>Exception: The PDF stream appears to be encrypted. caused by exception: Reader::init(...)encrypted pdf is not supported</exceptionMessage>
</taskResult>

JHOVE

Unlike VeraPDF, JHOVE appears to be able to parse the file in spite of the open password. Its output contains an “Encryption” element with several child elements:

<property>
 <name>Encryption</name>
 <values arity="List" type="Property">
 <property>
 <name>SecurityHandler</name>
 <values arity="Scalar" type="String">
 <value>Standard</value>
 </values>
 </property>
 <property>
 <name>EFF</name>
 <values arity="Scalar" type="String">
 <value>Standard</value>
 </values>
 </property>
 <property>
 <name>Algorithm</name>
 <values arity="Scalar" type="String">
 <value>Document-defined</value>
 </values>
 </property>
 <property>
 <name>KeyLength</name>
 <values arity="Scalar" type="Integer">
 <value>128</value>
 </values>
 </property>
 <property>
 <name>StandardSecurityHandler</name>
 <values arity="List" type="Property">
 <property>
 <name>UserAccess</name>
 <values arity="List" type="String">
 <value>Print</value>
 <value>Modify</value>
 <value>Extract</value>
 <value>Add/modify annotations/forms</value>
 <value>Fill interactive form fields</value>
 <value>Extract for accessibility</value>
 <value>Print high quality</value>
 </values>
 </property>
 <property>
 <name>Revision</name>
 <values arity="Scalar" type="Integer">
 <value>4</value>
 </values>
 </property>
 <property>
 <name>OwnerString</name>
 <values arity="Scalar" type="String">
 <value>0x03a59d10aae3b50f1a30c34fbb1be09ababfc1fb19f0d3491ee84c1752671918</value>
 </values>
 </property>
 <property>
 <name>UserString</name>
 <values arity="Scalar" type="String">
 <value>0xf240da93aa83bb9f336cf249812c4db700000000000000000000000000000000</value>
 </values>
 </property>
 </values>
 </property>
 </values>
</property>

Even though it’s helpful that JHOVE shows that this file contains security-related features, the above output doesn’t provide any direct clue of the more specific open password feature6. This is unfortunate, given that open passwords are one of the most serious PDF preservation risks.

Copy, printing and text access passwords

Test files

	File	Description
	encryption_nocopy.pdf	Copying document contents requires password.
	encryption_noprinting.pdf	Printing requires password.
	encryption_notextaccess.pdf	Text access (e.g. by a screen reader) requires password.

 Adobe Acrobat's rendering of a PDF with that requires a password for printing.

VeraPDF

Information on usage restrictions can be found in the documentSecurity element of VeraPDF’s output. Below is an example (taken from the output of the copy-protected file):

<documentSecurity>
 <filter>Standard</filter>
 <version>4</version>
 <length>128</length>
 <ownerKey>5F7FA03AD5A40C66...</ownerKey>
 <userKey>A572ACDFF8B3DC74...</userKey>
 <encryptMetadata>true</encryptMetadata>
 <printAllowed>true</printAllowed>
 <printDegradedAllowed>true</printDegradedAllowed>
 <changesAllowed>true</changesAllowed>
 <modifyAnnotationsAllowed>true</modifyAnnotationsAllowed>
 <fillingSigningAllowed>true</fillingSigningAllowed>
 <documentAssemblyAllowed>false</documentAssemblyAllowed>
 <extractContentAllowed>false</extractContentAllowed>
 <extractAccessibilityAllowed>true</extractAccessibilityAllowed>
</documentSecurity>

Here, the “false” value of the extractContentAllowed element indicates this file is copy-protected. The printAllowed and printDegradedAllowed elements indicate whether printing is allowed (example here), and “false” values of extractContentAllowed and extractAccessibilityAllowed indicate a text access password (example here).

JHOVE

For JHOVE, the UserAccess property (which is a child element of the Encryption property) provides information about usage restrictions. Below for the copy-restricted document (full output here):

<property>
 <name>UserAccess</name>
 <values arity="List" type="String">
 <value>Print</value>
 <value>Modify</value>
 <value>Add/modify annotations/forms</value>
 <value>Fill interactive form fields</value>
 <value>Extract for accessibility</value>
 <value>Print high quality</value>
 </values>
</property>

And here for the print-restricted document (full output here):

<property>
 <name>UserAccess</name>
 <values arity="List" type="String">
 <value>Modify</value>
 <value>Extract</value>
 <value>Add/modify annotations/forms</value>
 <value>Fill interactive form fields</value>
 <value>Extract for accessibility</value>
 </values>
</property>

The above examples show that JHOVE only reports user access types that are permitted. This means that if we want to verify if a document is print-restricted, we need to check for the absence of the values Print and Print high quality. This is impractical, because it assumes the user has a priori knowledge of all possible values that JHOVE is capable of reporting (which are also undocumented). VeraPDF’s makes this considerably easier by always reporting all user access types and their respective values.

Multimedia

Test files

	File	Description
	embedded_video_quicktime.pdf	Contains embedded Quicktime movie.
	embedded_video_avi.pdf	Contains embedded AVI movie.

 Adobe Acrobat's rendering of a PDF with an embedded Quicktime movie.

VeraPDF

For both files the presence of the multimedia content is indicated by two elements in VeraPDF’s output. First, the actions element contains a reference to a Rendition action:

<action type="Rendition">
 <location>Annotation</location>
</action>

Furthermore, the annotations element contains a reference to a Screen annotation:

<annotation id="annotIndir35">
 <subType>Screen</subType>
 <rectangle lly="360.647" llx="73.180" urx="393.180" ury="600.647"></rectangle>
 <width>320.000</width>
 <height>240.000</height>
 <resources>
 <xobject id="xobjIndir39"></xobject>
 </resources>
 <invisible>false</invisible>
 <hidden>false</hidden>
 <print>true</print>
 <noZoom>false</noZoom>
 <noRotate>false</noRotate>
 <noView>false</noView>
 <readOnly>false</readOnly>
 <locked>false</locked>
 <toggleNoView>false</toggleNoView>
 <lockedContents>false</lockedContents>
</annotation>

JHOVE

The JHOVE output only refers to the Screen annotation for these files (JHOVE doesn’t report on actions):

<property>
 <name>Annotation</name>
 <values arity="List" type="Property">
 <property>
 <name>Subtype</name>
 <values arity="Scalar" type="String">
 <value>Screen</value>
 </values>
 </property>
 ::
</property>

Besides Rendition actions and Screen annotations, there are several other action and annotation types that indicate multimedia content, and we’ll see some examples later on in the analysis of the Adobe Acrobat Engineering files.

JavaScript

Test files

	File	Description
	javascript.pdf	Contains JavaScript.

VeraPDF

The actions element of VeraPDF’s output contains the following JavaScript action reference7:

Result:

<action type="JavaScript">
<location>Document</location>
</action>

JHOVE

I couldn’t find any JavaScript reference in the JHOVE output for the same file.

Font embedding

Test files

	File	Description
	text_only_fontsNotEmbedded.pdf	Only uses fonts that are not embedded.
	text_only_fontsEmbeddedAll.pdf	Only uses fonts that are embedded.

 Adobe Acrobat's rendering of a PDF that uses non-embedded font that is not available on the target machine.

VeraPDF

The fonts element in VeraPDF’s output contains child elements for each font that is used in a document. For the PDF that only uses fonts that are not embedded, this results in the following output (full output file here):

<type>TrueType</type>
<baseFont>TimesNewRomanPSMT</baseFont>
<firstChar>32</firstChar>
<lastChar>255</lastChar>
<encoding>WinAnsiEncoding</encoding>
<fontDescriptor>
 <subset>false</subset>
 <fontName>TimesNewRomanPSMT</fontName>
 <fontFamily>Times New Roman</fontFamily>
 <fontStretch>Normal</fontStretch>
 <fontWeight>400.000</fontWeight>
 <fixedPitch>false</fixedPitch>
 <serif>true</serif>
 <symbolic>false</symbolic>
 <script>false</script>
 <nonsymbolic>true</nonsymbolic>
 <italic>false</italic>
 <allCap>false</allCap>
 <smallCap>false</smallCap>
 <forceBold>false</forceBold>
 <fontBBox lly="-307.000" llx="-568.000" urx="2000.000" ury="1007.000"></fontBBox>
 <italicAngle>0.000</italicAngle>
 <ascent>891.000</ascent>
 <descent>-216.000</descent>
 <leading>0.000</leading>
 <capHeight>1000.000</capHeight>
 <xHeight>1000.000</xHeight>
 <stemV>82.000</stemV>
 <stemH>0.000</stemH>
 <averageWidth>0.000</averageWidth>
 <maxWidth>0.000</maxWidth>
 <missingWidth>0.000</missingWidth>
 <embedded>false</embedded>
</fontDescriptor>

Here, the value of embedded in the fontDescriptor sub-element indicates whether a font is embededded or not (in this example it isn’t). So, to check if a PDF uses fonts that are not embedded, one can simply iterate over all font elements and check the value of /fontDescriptor/embedded for each of these.

JHOVE

The JHOVE output for the same PDF does contain several font-related properties, but none of them are related to embedding. So, I initially assumed that JHOVE simply didn’t report this. However, when I looked at JHOVE’s output for the PDF with only embedded fonts, I noticed this property (part of a FontDescriptor element):

<property>
 <name>FontFile2</name>
 <values arity="Scalar" type="Boolean">
 <value>true</value>
 </values>
</property>

Since JHOVE doesn’t report the FontFile2 property for the PDF without embedded fonts, I wondered if this was a coincidence. As the meaning of this property (or any of JHOVE’s properties for that matter) is not documented, I took a peek at JHOVE’s source code. This revealed that the FontFile2 property originates from the “font descriptor” dictionary, which is documented in section 9.8 (Font Descriptors) of the ISO 32000-1 PDF specification. Here we can see (Table 122) that the keys FontFile, FontFile2 and FontFile3 (which also exist as separate JHOVE properties) all indicate embedded fonts.

This means we can actually use JHOVE’s output to check for font embedding, but to identify a PDF with one or more fonts that are not embedded, one needs to iterate over all font property groups, and then check for the absence of either of three separate properties (FontFile, FontFile2 and FontFile3). None of these properties are documented. This is not ideal to begin with, and made worse by JHOVE’s rather labyrinthine output format.

File attachments

Test files

	File	Description
	fileAttachment.pdf	Contains file attachment that uses EmbeddedFiles entry.
	fileAttachment_fileAttachmentAnnotation.pdf	Contains file attachment that uses File Attachment Annotation.

File attachments in PDF can be implemented in two different ways, using either an EmbeddedFiles entry in the document’s name dictionary, or a File Attachment Annotation.

VeraPDF

For the sample file with the EmbeddedFiles entry, VeraPDF’s output contains an embeddedFiles element with one or more child elements:

<embeddedFiles>
 <embeddedFile id="file1">
 <fileName>KSBASE.WQ2</fileName>
 <description></description>
 <filter>FlateDecode</filter>
 <creationDate>2012-11-23T15:40:38.000+01:00</creationDate>
 <modDate>2012-11-19T12:35:10.000Z</modDate>
 <checkSum>)#x000002Aﬁ˛½�ﬂô#x000004‘SèŠ-¡</checkSum>
 <size>20668</size>
 </embeddedFile>
</embeddedFiles>

For the sample file with the File Attachment Annotation, the annotations element in VeraPDF’s output contains an annotation child element that has “FileAttachment” as its subtype:

<annotation id="annotIndir26">
 <subType>FileAttachment</subType>
 <rectangle lly="562.840" llx="185.281" urx="199.281" ury="582.840"></rectangle>
 <width>14.000</width>
 <height>20.000</height>
 <contents>PF.WK1</contents>
 <annotationName>9a716f25-da75-4309-b918-483cfa9f6473</annotationName>
 <modifiedDate>D:20131024143706+02'00'</modifiedDate>
 <resources>
 <xobject id="xobjIndir29"></xobject>
 </resources>
 <color red="0.250000" green="0.333328" blue="1.000000"></color>
 <invisible>false</invisible>
 <hidden>false</hidden>
 <print>true</print>
 <noZoom>true</noZoom>
 <noRotate>true</noRotate>
 <noView>false</noView>
 <readOnly>false</readOnly>
 <locked>false</locked>
 <toggleNoView>false</toggleNoView>
 <lockedContents>false</lockedContents>
</annotation>

JHOVE

For the sample file with the EmbeddedFiles entry, JHOVE’s output contains a PageMode element with UseAttachments as one of its values:

<property>
 <name>PageMode</name>
 <values arity="Scalar" type="String">
 <value>UseAttachments</value>
 </values>
</property>

For the sample file with the File Attachment Annotation, JHOVE’s output reports a “FileAttachment” annotation:

<property>
<name>Annotation</name>
<values arity="List" type="Property">
<property>
 <name>Subtype</name>
 <values arity="Scalar" type="String">
 <value>FileAttachment</value>
 </values>
</property>
<property>

Link to external file

Test files

	File	Description
	externalLink.pdf	Contains link to an external document.

VeraPDF

For the test file, the actions element of VeraPDF’s output contains a “Launch” action:

<action type="Launch">
 <location>Annotation</location>
</action>

Further to that, the annotations element contains a child element for a “Link” annotation:

<annotation id="annotIndir35">
 <subType>Link</subType>
 <rectangle lly="678.816" llx="70.860" urx="200.820" ury="694.584"></rectangle>
 <width>129.960</width>
 <height>15.768</height>
 <invisible>false</invisible>
 <hidden>false</hidden>
 <print>true</print>
 <noZoom>false</noZoom>
 <noRotate>false</noRotate>
 <noView>false</noView>
 <readOnly>false</readOnly>
 <locked>false</locked>
 <toggleNoView>false</toggleNoView>
 <lockedContents>false</lockedContents>
</annotation>

As explained in section 12.6.4.5 (Launch actions) of ISO 32000-1:

 A launch action launches an application or opens or prints a document.

So, it is not exclusively associated with external documents, but it might also indicate a dependency on external software, which makes it all the more relevant for preservation. Link annotations can also serve several purposes. Section 12.5.6.5 (Link annotations) of ISO 32000-1:

 A link annotation represents either a hypertext link to a destination elsewhere in the document (…) or an action to be performed.

If I’m reading this correctly, the presence of a link annotation alone not always imply an external dependency.

JHOVE

JHOVE’s output only contains this reference to the Link annotation:

<property>
 <name>Annotation</name>
 <values arity="List" type="Property">
 <property>
 <name>Subtype</name>
 <values arity="Scalar" type="String">
 <value>Link</value>
 </values>
 </property>
 ::
<property>

JHOVE doesn’t report any actions (including the Launch action in this file).

Web Capture content

Test files

	File	Description
	webCapture.pdf	Contains Web Capture content.

When I created this test file back in 2012, I was under the impression that all Web Capture content by its nature had a dependency on the live web. Reading section 14.10 (Web Capture) of ISO 32000-1 once more, it turns out that this is not the case:

 The information in the Web Capture data structures enables conforming products to perform the following
operations:

 	Save locally and preserve the visual appearance of material from the Web
	Retrieve additional material from the Web and add it to an existing PDF file
	Update or modify existing material previously captured from the Web

So, Web Capture content may simply be a local copy of material that was captured from the web at the time of the PDF’s creation. This seems to be the case for this test file. When I open it on my machine (using Xreader), it shows a snapshot of the Open Planets Foundation website from the time of the document’s creation (2012):

It’s not entirely clear to me how and under what circumstances additional material is retrieved from the web, or existing material is updated. This makes it hard to judge how much of a preservation risk Web Capture content poses in actual practice.

VeraPDF

The output of VeraPDF contains several interesting bits. First, there are these references to a GoTo action, a URI action and a SubmitForm action:

 <action type="GoTo">
<location>Annotation</location>
</action>
<action type="URI">
<location>Annotation</location>
</action>
<action type="SubmitForm">
<location>Annotation</location>
</action>

Moreover, the annotations element contains a large number of Link annotations:

<annotation id="annotIndir163">
<subType>Link</subType>
<rectangle lly="720.000" llx="11.000" urx="88.000" ury="760.000"></rectangle>
<width>77.000</width>
<height>40.000</height>
<invisible>false</invisible>
<hidden>false</hidden>
<print>false</print>
<noZoom>false</noZoom>
<noRotate>false</noRotate>
<noView>false</noView>
<readOnly>false</readOnly>
<locked>false</locked>
<toggleNoView>false</toggleNoView>
<lockedContents>false</lockedContents>
</annotation>

JHOVE

Looking at JHOVE’s output, I couldn’t find any reference to the Web Capture content at all. The missing references to the GoTo action, URI action and SubmitForm action are understandable, since JHOVE doesn’t report any actions. The absence of any reference to the numerous Link annotations is nevertheless surprising.

Byte corruption

Test files

	File	Description
	corruptionOneByteMissing.pdf	Has one byte of missing data, immediately following the file header.

VeraPDF

The byte corruption in this file causes an exception in VeraPDF. Details can be found in the taskResult element of the output file:

Result:

<taskResult type="PARSE" isExecuted="true" isSuccess="false">
 <duration start="1683818745078" finish="1683818745121">00:00:00.043</duration>
 <exceptionMessage>Exception: Couldn't parse stream caused by exception: Pages not found</exceptionMessage>
</taskResult>

It looks like the taskResult element is currently only included if an exception occurs. It would be more consistent to include it for every processsed file. This would make it more straightforward to use the output to identify PDFS that caused any exceptions or parse errors in VeraPDF. These are usually an indication that something is seriously wrong with a file, and the value of the isSuccess attribute could be used as a rough validation proxy. I’ve created an issue for this.

JHOVE

JHOVE’s output contains the following error:

<message offset="0" severity="error" id="PDF-HUL-140">Document catalog dictionary object number and trailer root ref number are inconsistent.</message>

Since this test file only represents one very specific case of byte corruption, I expect that other types might result in quite different JHOVE errors (but this is outside the scope of this investigation).

Analysis Adobe Acrobat Engineering dataset

The results of the Horror Corpus analysis highlight the significance of actions and annotations, which are often indicative of features that are associated with preservation risks. The Horror Corpus analysis already showed that for one test file, annotations that were correctly reported by VeraPDF, were subsequently not picked up by JHOVE. I did some further tests to determine whether this was an isolated case, or perhaps an indication of a more structural problem. For these tests I used the files in the “Classic Multimedia” category of the Adobe Acrobat Engineering dataset. These files make heavy use of actions and annotations, which makes them well suited for this purpose.

Results

The full VeraPDF and JHOVE output for these files can be found here. The following table summarizes the actions and annotations that are reported by VeraPDF and JHOVE:

	File	Actions (VeraPDF)	Annotations (VeraPDF)	Annotations (JHOVE)
	AdobeChassisDemo-commented_Review.pdf	JavaScript	3D
Ink
Text
Popup
Polygon	Popup
Ink
Text
3D
Polygon
	movie.pdf	 	Movie	
	MusicalScore.pdf	GoTo
JavaScript
URI
Rendition	Screen
Widget
Link	Link
Widget
Screen
	LabelExample.pdf	GoTo3DView
JavaScript	3D
Widget	3D
Widget
	MultiMedia_Acro6.pdf	Rendition	Screen	Screen
	AVI+Transitions Demo.pdf	 	 	
	20020402_CALOS.pdf	Movie
Hide
Named
GoTo	Link
Movie
Widget	
	Disney-Flash.pdf	URI
Rendition
SubmitForm	Widget
Link
Screen	Widget
Link
Screen
	gXsummer2004-stream.pdf	 	 	
	SVG-AnnotAnim.pdf	 	SVG	
	Service Form_media.pdf	SubmitForm
Named
ResetForm
JavaScript
Rendition	Widget
Link
Screen	Screen
Widget
Link
	Binder_6-3DPages.pdf	GoTo	3D	3D
	us_population.pdf	GoTo	SVG	SVG
	SVG.pdf	JavaScript
URI	Widget	Widget
	phlmapbeta7.pdf	Rendition	Screen	Screen
	ScriptEvents.pdf	JavaScript
GoTo
Rendition	Screen
Widget	Widget
Screen
	Trophy.pdf	JavaScript
URI
GoTo
Rendition	Screen
Widget
Link	Widget
Link
Screen
	VolvoS40V50-Full.pdf	Named
JavaScript
GoTo
URI
Rendition	Widget
Link
Screen	Screen
Widget
Link
	Jpeg_linked.pdf	Named
GoTo
Rendition	Link
Screen	Link
Screen
	AdobeChassisDemo-commented.pdf	 	3D
Popup
Polygon
Text	Popup
Polygon
3D
Text
	drape_raster_contour_sample.pdf	URI	Link
3D	3D
Link
	remotemovieurl.pdf	 	Movie
FreeText	
	3-D_PDF.pdf	 	3D	3D
	movie_down1.pdf	 	Movie	

Note that the table doesn’t have an “Actions” column for JHOVE. This is because, unlike VeraPDF, JHOVE’s output doesn’t include any information on actions at all.

Both VeraPDF and JHOVE provide information about annotations, and even though the results are broadly similar for both tools, there are some noteworthy differences.

For the files “movie.pdf”, “20020402_CALOS.pdf”, “remotemovieurl.pdf” and “movie_down1.pdf”, JHOVE doesn’t report any annotations at all. In all four cases the output contains the following annotation-related validation error;

<message offset="17342" severity="error" id="PDF-HUL-120">Annotation dictionary missing required type (S) entry</message>

VeraPDF’s output shows that all of these files contain a Movie annotation. I’m not sure if this is a coincidence.

For the file “SVG-AnnotAnim.pdf”, JHOVE doesn’t report the SVG annotation. A look at the output shows that JHOVE wasn’t able to parse this file at all, with the following validation error:

<message offset="0" severity="error" id="PDF-HUL-144">Pages dictionary has no Type key or it has a null value.</message>

Behaviour with corrupted files

Two PDFs in this dataset are corrupted: “gXsummer2004-stream.pdf” and “AVI+Transitions Demo.pdf”. For both files, VeraPDF’s output reports a parse exception:

<taskResult type="PARSE" isExecuted="true" isSuccess="false">

Meanwhile JHOVE throws a “No PDF header” validation error:

<message offset="0" severity="error" id="PDF-HUL-137">No PDF header</message>

Support for PDF 2.0

Since it’s been almost six years now since the launch of PDF 2.0, I was curious to see to what extent it is supported by VeraPDF and JHOVE. To find out, I ran both on this set of PDF 2.0 example files by the PDF Association.

Out of the 7 files in this dataset, 6 resulted in the following JHOVE error (full output here):

<message offset="0" severity="error" id="PDF-HUL-137">No PDF header</message>

These files were subsequently not parsed at all. The only exception here is this “PDF 2.0 via incremental save.pdf” file, which has “1.7” as its designated version number in the PDF header.

By contrast, VeraPDF was able to read all PDF 2.0 files in this dataset without any problems.

Discussion

The combined results of the above analyses of the Horror Corpus, the Adobe Acrobat Engineering dataset and the PDF 2.0 example files allow us to draw a number of conclusions.

JHOVE

First of all, even though both VeraPDF and JHOVE are able to detect many PDF features that are associated with known preservation risks, JHOVE has several limitations that make it less appealing for this purpose:

	JHOVE’s output doesn’t include any information about actions, which means it cannot be used for detecting e.g. JavaScript or Launch actions (which are often indicative of external dependencies).
	Many PDF features that are preservation risks are associated with annotations. Even though JHOVE is able to report most of these, the comparison against VeraPDF’s output shows that JHOVE’s reporting of annotations is often incomplete.
	JHOVE’s reporting on encryption and security-related restrictions could be more informative. Most importantly, it doesn’t allow one to single out files that require an open password (which present one of the most serious PDF preservation risks).
	Moreover, JHOVE makes the detection of user access restrictions (print, copy and text access) unnecessarily difficult by only reporting these features if they are not restricted. This is impractical, because it means we have to check for the absence of these features in JHOVE’s output. It also assumes prior knowledge on the user’s behalf of properties that are completely undocumented.
	Even though JHOVE does report whether fonts are embedded, this information is encoded in a way that is needlessly complicated, because it involves checking the output for the absence (again!) of three properties that are undocumented.
	No documentation exists of any of JHOVE’s reported properties. This can make their interpretation difficult. The aforementioned font embedding issue is a good example of this: if we want to know if a particular font is embedded or not, we need to check three separate properties (FontFile, FontFile2 and FontFile3), which are all undocumented. I was only able to figure this out by digging into JHOVE’s source code, and consulting the ISO 32000-1 PDF specification.
	Another (but related) problem is JHOVE’s rather clumsy and convoluted XML output format, which is made up by a labyrinthine assortment of nested “property” elements. This makes the format difficult to read, either by a human or a machine8. It’s not possible to address the reported properties directly using, for example, standard xpath expressions. This is because all properties are encoded as identically-named property elements, where the name of each individual property is the text value of its name child element. Of course this doesn’t preclude parsing the format altogether, but it does make working with JHOVE’s output considerably harder than most modern, well-designed XML formats.
	Finally, the tests showed that JHOVE lacks support for PDF 2.0. On encountering a document with a PDF 2.0 header, JHOVE simply reports an error and stops parsing the file. As a result, JHOVE’s output on PDF 2.0 documents does not contain any meaningful information.

VeraPDF

VeraPDF was able to detect all features that are associated with known preservation risks in the “Horror Corpus” files. Unlike JHOVE, VeraPDF also reports on actions. VeraPDF’s coverage of annotations is more comprehensive, and it also provides detailed information about security-related restrictions. I was unable to find any detailed documentation of VeraPDF’s reported properties, but the documentation does provide a general overview of the reported feature categories. Also, VeraPDF’s XML output format is much simpler, better structured and easier to navigate than the one used by JHOVE. Each reported property can be addressed directly by the name of its corresponding XML element, and the property names are mostly self-explanatory.

For convenience, the following table summarises the elements in VeraPDF’s output that turned out to be the most interesting ones for the current analysis (asterisks indicates repeatable elements):

	Element (relative to job element)	Significance
	taskResult	Parse status, rough validity proxy, may be used to identify malformed files and files that require open password
	featuresReport/documentSecurity	Child elements indicate security-related restrictions (e.g. copy, printing and text access passwords)
	featuresReport/actions/action*	Some actions imply a preservation risk
	featuresReport/annotations/annotation*	Some annotations imply a preservation risk
	featuresReport/documentResources/fonts/font/fontDescriptor/embedded*	Value indicates whether font is embedded or not
	featuresReport/embeddedFiles/embeddedFile*	Indicates presence of file attachment

In order to report these, at minimum the following feature types must be enabled in VeraPDF’s configuration file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<featuresConfig>
 <enabledFeatures>
 <feature>ACTION</feature>
 <feature>ANNOTATION</feature>
 <feature>DOCUMENT_SECURITY</feature>
 <feature>EMBEDDED_FILE</feature>
 <feature>FONT</feature>
 </enabledFeatures>
</featuresConfig>

Conclusion

The tests with the Horror Corpus, the Acrobat Engineering files and the PDF 2.0 example files show that between VeraPDF and JHOVE, VeraPDF is the better choice for detecting specific PDF features that are associated with preservation risks. VeraPDF is able to report on a wider range of features, its output is far easier to interpret and process, and it is less likely to “give up” on files. A limitation of VeraPDF is that, unlike JHOVE, it is not capable of validating PDF’s lower-level data structures (full PDF validation). Such deviations from the published specifications can result in a whole separate class of preservation risks, but these are outside the scope of this work. VeraPDF’s parse status may be used as a rough validity proxy to identify malformed files. Depending on what preservation risks are considered important (which in turn depends on institutional contexts and preservation policies), both VeraPDF and JHOVE should be seen as complementary to each other.

Acknowledgements

Thanks are due to Sam Alloing (KB) and Tyler Thorsted (Brigham Young University) for their feedback to an earlier draft of this post, and for various (online) discussions related to this work.

Further resources

	
 Github repo with analysis scripts and raw tool output

	
 Open Preservation Foundation format corpus

	
 PDF 2.0 examples

	
 PDF Significant Properties Spreadsheet by Tyler Thorsted

 	
 See the KB File Format Guidelines for more details. ↩

	
 See “Identification of PDF preservation risks with Apache Preflight: a first impression”, “Identification of PDF preservation risks with Apache Preflight: the sequel” and “Identification of PDF preservation risks: analysis of Govdocs selected corpus”. ↩

	
 See e.g. “A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly” by Lindlar, Tunnat and Wilson. ↩

	
 Several other tools PDF validators exist, but none of these, including JHOVE, have gained widespread acceptance by industry and other stakeholders. ↩

	
 This is explained in VeraPDF’s documentation. ↩

	
 I initially assumed the OwnerString and UserString properties might be related to the presence of an owner password, but these are also reported for PDFs with other security-related restrictions, like print and copy passwords. ↩

	
 JavaScript detection wasn’t possible in an earlier analysis I did in 2017, because VeraPDF didn’t support actions at that time. ↩

	
 For my analyses I had to re-run JHOVE with output set to TEXT on various occasions to make sense of the output. ↩

 	

 JHOVE
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Breaking WAVEs (and some FLACs too)
	Why can't we have digital preservation tools that just work?
	A simple JP2 file structure checker

	

 PDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	PDF/A as a preferred, sustainable format for spreadsheets?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	When (not) to migrate a PDF to PDF/A
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	What do we mean by "embedded" files in PDF?
	Identification of PDF preservation risks with Apache Preflight: a first impression
	PDF – Inventory of long-term preservation risks

	

 preservation-risks
 	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Does Microsoft OneDrive export large ZIP files that are corrupt?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	Measuring Bigfoot
	Assessing file format risks: searching for Bigfoot?
	PDF – Inventory of long-term preservation risks
	EPUB for archival preservation

	

 VeraPDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

 	← Previous
	Next →

 Comments

	
	 Post comment (Github)
	

 About

 Search

	
	
 Tags

 	

 Android
 	Towards a preservation workflow for mobile apps
	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 Apache-Preflight
 	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	Identification of PDF preservation risks with Apache Preflight: a first impression

	

 Apache-Tika
 	Extracting text from EPUB files in Python
	PDF processing and analysis with open-source tools
	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot

	

 APK
 	Towards a preservation workflow for mobile apps

	

 Debian
 	Adventures in Debian packaging
	Update on jpylyzer

	

 digital-dark-age
 	How to preserve your personal Twitter archive
	Wheel Out the Digital Dark Age Klaxon!

	

 digital-preservation-day
 	Wheel Out the Digital Dark Age Klaxon!

	

 disk-imaging
 	Writing yet another workflow tool for imaging portable media
	Identification of physical storage media and devices with Python and the Windows API
	A simple disk imaging workflow tool

	

 diskimgr
 	A simple disk imaging workflow tool

	

 DNS
 	Moving my Internet domains

	

 DROID
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 e-depot
 	Top 50 file formats in the KB e-Depot

	

 emulation
 	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 EPUB
 	Extracting text from EPUB files in Python
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Valid, but not accessible: crazy fixed EPUB layouts
	The future of EPUB? A first look at the EPUB 3.1 Editor’s draft
	Policy-based assessment of EPUB with Epubcheck
	EPUB for archival preservation: an update
	EPUB for archival preservation

	

 EPUBCheck
 	Policy-based assessment of EPUB with Epubcheck
	EPUB for archival preservation: an update

	

 Fido
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 FITS
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE

	

 FLAC
 	Breaking WAVEs (and some FLACs too)

	

 floppy-disks
 	Writing yet another workflow tool for imaging portable media
	Identification of physical storage media and devices with Python and the Windows API
	Offline digital data carriers in the KB deposit collection
	A simple disk imaging workflow tool

	

 format-identification
 	Towards a preservation workflow for mobile apps
	Top 50 file formats in the KB e-Depot
	Magic editing and creation: a primer
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 format-validation
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset

	

 geodata
 	Mapping the Dutch web domain
	Web domain geolocation and spatial analysis with QGIS

	

 GitHub-Pages
 	Moving my Internet domains

	

 GW-BASIC
 	A prototype JP2 validator and properties extractor

	

 HFS
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs

	

 High-Sierra
 	Introducing Isolyzer 1.4

	

 internet
 	Moving my Internet domains

	

 iOS
 	Towards a preservation workflow for mobile apps

	

 IPA
 	Towards a preservation workflow for mobile apps

	

 iromlab
 	Image and Rip Optical Media Like A Boss!

	

 ISO-9660
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer
	Preserving optical media from the command-line

	

 isolyzer
 	Introducing Isolyzer 1.4
	A simple workflow tool for imaging optical media using readom and ddrescue
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer

	

 JHOVE
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Breaking WAVEs (and some FLACs too)
	Why can't we have digital preservation tools that just work?
	A simple JP2 file structure checker

	

 JHOVE2
 	Why can't we have digital preservation tools that just work?
	Evaluation of identification tools: first results from SCAPE

	

 JP2
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Response to report on JPEG 2000 expert round table
	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Optimising archival JP2s for the derivation of access copies
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker
	Paper on JPEG 2000 for preservation
	Ensuring the suitability of JPEG 2000 for preservation

	

 jpeg-2000
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Response to report on JPEG 2000 expert round table
	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Optimising archival JP2s for the derivation of access copies
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker
	Paper on JPEG 2000 for preservation
	Ensuring the suitability of JPEG 2000 for preservation

	

 jpylyzer
 	Generating lossy access JP2s from lossless preservation masters
	Jpylyzer 2015 round-up
	Jpylyzer software finalist voor digitale duurzaamheidsprijs
	Adventures in Debian packaging
	Automated assessment of JP2 against a technical profile
	Update on jpylyzer
	Jpylyzer documentation
	A prototype JP2 validator and properties extractor
	A simple JP2 file structure checker

	

 magic
 	Magic editing and creation: a primer

	

 Microsoft
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

	

 omimgr
 	A simple workflow tool for imaging optical media using readom and ddrescue

	

 OneDrive
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

	

 optical-media
 	Identification of physical storage media and devices with Python and the Windows API
	Introducing Isolyzer 1.4
	Offline digital data carriers in the KB deposit collection
	A simple workflow tool for imaging optical media using readom and ddrescue
	Resurrecting the first Dutch web index: NL-menu revisited
	Update on Isolyzer: UDF, HFS+ and more!
	Image and Rip Optical Media Like A Boss!
	Imaging CD-Extra / Blue Book discs
	Detecting broken ISO images: introducing Isolyzer
	Breaking WAVEs (and some FLACs too)
	Preserving optical media from the command-line

	

 packaging
 	Adventures in Debian packaging
	Update on jpylyzer

	

 PDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	PDF/A as a preferred, sustainable format for spreadsheets?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	When (not) to migrate a PDF to PDF/A
	Identification of PDF preservation risks: analysis of Govdocs selected corpus
	Identification of PDF preservation risks with Apache Preflight: the sequel
	What do we mean by "embedded" files in PDF?
	Identification of PDF preservation risks with Apache Preflight: a first impression
	PDF – Inventory of long-term preservation risks

	

 preservation-risks
 	Identification of PDF preservation risks with VeraPDF and JHOVE
	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools
	ISO/IEC TS 22424 standard on EPUB3 preservation
	Does Microsoft OneDrive export large ZIP files that are corrupt?
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A
	Measuring Bigfoot
	Assessing file format risks: searching for Bigfoot?
	PDF – Inventory of long-term preservation risks
	EPUB for archival preservation

	

 python
 	Extracting text from EPUB files in Python
	Identification of physical storage media and devices with Python and the Windows API

	

 Quattro-Pro
 	Quattro Pro for DOS: an obsolete format at last?

	

 rant
 	Why can't we have digital preservation tools that just work?

	

 schematron
 	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Policy-based assessment of EPUB with Epubcheck
	Automated assessment of JP2 against a technical profile

	

 Siegfried
 	Towards a preservation workflow for mobile apps

	

 significant-properties
 	On The Significant Properties of Spreadsheets

	

 spreadsheets
 	On The Significant Properties of Spreadsheets
	PDF/A as a preferred, sustainable format for spreadsheets?
	Quattro Pro for DOS: an obsolete format at last?

	

 tapeimgr
 	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	Roll the tape - recovering '90s data tapes in BitCurator

	

 tapes
 	Identification of physical storage media and devices with Python and the Windows API
	Offline digital data carriers in the KB deposit collection
	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	Roll the tape - recovering '90s data tapes in BitCurator

	

 TIFF
 	On The Significant Properties of Spreadsheets

	

 Twitter
 	How to preserve your personal Twitter archive

	

 UDF
 	Introducing Isolyzer 1.4
	Update on Isolyzer: UDF, HFS+ and more!
	Imaging CD-Extra / Blue Book discs

	

 unix-file
 	Towards a preservation workflow for mobile apps
	Magic editing and creation: a primer
	Evaluation of identification tools: first results from SCAPE
	Improved identification of XML: a Python experiment

	

 VeraPDF
 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset
	Identification of PDF preservation risks with VeraPDF and JHOVE
	PDF processing and analysis with open-source tools
	Policy-based assessment with VeraPDF - a first impression
	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

	

 virtualization
 	Four Android emulators, two apps
	Running archived Android apps on a PC: first impressions

	

 WAVE
 	Breaking WAVEs (and some FLACs too)

	

 web-archaeology
 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web
	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)
	A simple disk imaging workflow tool
	Roll the tape - recovering '90s data tapes in BitCurator
	Crawling offline web content: the NL-menu case
	Resurrecting the first Dutch web index: NL-menu revisited

	

 web-archiving
 	How to preserve your personal Twitter archive
	Mapping the Dutch web domain
	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web
	Web domain geolocation and spatial analysis with QGIS
	Crawling offline web content: the NL-menu case
	Resurrecting the first Dutch web index: NL-menu revisited
	Dutch newspaper wipes out articles citing fabricated sources - Internet Archive to the rescue!
	Perdiep Ramesar in het Internet Archive
	Demise of the Dutch Blogosphere
	How to save a web page to the Internet Archive

	

 XS4ALL
 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web

	

 ZIP
 	Does Microsoft OneDrive export large ZIP files that are corrupt?

 Archive

 2023
 June

 	VeraPDF parse status as a proxy for PDF rendering: experiments with the Synthetic PDF Testset

 May

 	Identification of PDF preservation risks with VeraPDF and JHOVE

 March

 	Extracting text from EPUB files in Python

 February

 	Moving my Internet domains

 January

 	Writing yet another workflow tool for imaging portable media

 2022
 November

 	How to preserve your personal Twitter archive
	Wheel Out the Digital Dark Age Klaxon!

 June

 	Identification of physical storage media and devices with Python and the Windows API

 April

 	Introducing Isolyzer 1.4

 March

 	Generating lossy access JP2s from lossless preservation masters

 2021
 September

 	On The Significant Properties of Spreadsheets
	PDF processing and analysis with open-source tools

 February

 	Towards a preservation workflow for mobile apps
	Four Android emulators, two apps

 2020
 September

 	Mapping the Dutch web domain

 June

 	Restoring Liesbet's Virtual Home, a digital treasure from the early Dutch web

 April

 	ISO/IEC TS 22424 standard on EPUB3 preservation

 March

 	Does Microsoft OneDrive export large ZIP files that are corrupt?

 February

 	Offline digital data carriers in the KB deposit collection
	Web domain geolocation and spatial analysis with QGIS

 2019
 September

 	Recovering '90s Data Tapes - Experiences From the KB Web Archaeology project (iPres 2019 paper)

 April

 	A simple disk imaging workflow tool

 March

 	A simple workflow tool for imaging optical media using readom and ddrescue

 January

 	Roll the tape - recovering '90s data tapes in BitCurator

 2018
 July

 	Crawling offline web content: the NL-menu case

 April

 	Resurrecting the first Dutch web index: NL-menu revisited

 2017
 July

 	Update on Isolyzer: UDF, HFS+ and more!

 June

 	Image and Rip Optical Media Like A Boss!
	Policy-based assessment with VeraPDF - a first impression

 April

 	Imaging CD-Extra / Blue Book discs

 January

 	Detecting broken ISO images: introducing Isolyzer
	Breaking WAVEs (and some FLACs too)

 2016
 December

 	PDF/A as a preferred, sustainable format for spreadsheets?

 April

 	Valid, but not accessible: crazy fixed EPUB layouts

 March

 	The future of EPUB? A first look at the EPUB 3.1 Editor’s draft

 2015
 December

 	Jpylyzer 2015 round-up

 November

 	Preserving optical media from the command-line

 October

 	Response to report on JPEG 2000 expert round table

 July

 	Why PDF/A validation matters, even if you don't have PDF/A - Part 2
	Why PDF/A validation matters, even if you don't have PDF/A

 April

 	Top 50 file formats in the KB e-Depot

 March

 	Policy-based assessment of EPUB with Epubcheck

 January

 	Dutch newspaper wipes out articles citing fabricated sources - Internet Archive to the rescue!

 2014
 December

 	Perdiep Ramesar in het Internet Archive

 November

 	Demise of the Dutch Blogosphere

 October

 	Quattro Pro for DOS: an obsolete format at last?
	Running archived Android apps on a PC: first impressions

 September

 	Six ways to decode a lossy JP2
	Jpylyzer software finalist voor digitale duurzaamheidsprijs

 August

 	When (not) to migrate a PDF to PDF/A
	How to save a web page to the Internet Archive

 January

 	Why can't we have digital preservation tools that just work?
	Identification of PDF preservation risks: analysis of Govdocs selected corpus

 2013
 October

 	Measuring Bigfoot

 September

 	Assessing file format risks: searching for Bigfoot?

 August

 	Optimising archival JP2s for the derivation of access copies

 July

 	Identification of PDF preservation risks with Apache Preflight: the sequel
	ICC profiles and resolution in JP2: update on 2011 D-Lib paper

 May

 	EPUB for archival preservation: an update

 April

 	Adventures in Debian packaging

 January

 	What do we mean by "embedded" files in PDF?

 2012
 December

 	Identification of PDF preservation risks with Apache Preflight: a first impression

 September

 	Automated assessment of JP2 against a technical profile

 August

 	Magic editing and creation: a primer

 July

 	PDF – Inventory of long-term preservation risks

 June

 	EPUB for archival preservation

 April

 	Update on jpylyzer

 January

 	Jpylyzer documentation

 2011
 December

 	A prototype JP2 validator and properties extractor

 September

 	Evaluation of identification tools: first results from SCAPE
	A simple JP2 file structure checker

 July

 	Improved identification of XML: a Python experiment

 June

 	Paper on JPEG 2000 for preservation

 2010
 December

 	Ensuring the suitability of JPEG 2000 for preservation

 Issues

 Report a problem with this site

 Hackers Hall of Fame

 Social

 Mastodon (digipres.club)

 Feeds

 RSS

 ATOM

 © 2024 Johan van der Knijff. All content on this blog is licensed under a Creative Commons Attribution 4.0 International License, unless indicated otherwise. Created using Jekyll Bootstrap
 and Twitter Bootstrap.

	

